Show simple item record

dc.contributor.authorIkonen, Toni
dc.contributor.authorRomney, Matthew
dc.date.accessioned2022-08-29T06:17:58Z
dc.date.available2022-08-29T06:17:58Z
dc.date.issued2022
dc.identifier.citationIkonen, T., & Romney, M. (2022). Quasiconformal geometry and removable sets for conformal mappings. <i>Journal d'Analyse Mathématique</i>, <i>148</i>(1), 119-185. <a href="https://doi.org/10.1007/s11854-022-0224-5" target="_blank">https://doi.org/10.1007/s11854-022-0224-5</a>
dc.identifier.otherCONVID_151818335
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82857
dc.description.abstractWe study metric spaces defined via a conformal weight, or more generally a measurable Finsler structure, on a domain Ω ⊂ ℝ2 that vanishes on a compact set E ⊂ Ω and satisfies mild assumptions. Our main question is to determine when such a space is quasiconformally equivalent to a planar domain. We give a characterization in terms of the notion of planar sets that are removable for conformal mappings. We also study the question of when a quasiconformal mapping can be factored as a 1-quasiconformal mapping precomposed with a bi-Lipschitz map.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherHebrew University Magnes Press; Springer
dc.relation.ispartofseriesJournal d'Analyse Mathématique
dc.rightsIn Copyright
dc.titleQuasiconformal geometry and removable sets for conformal mappings
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208294386
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange119-185
dc.relation.issn0021-7670
dc.relation.numberinseries1
dc.relation.volume148
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, The Hebrew University of Jerusalem
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber308659
dc.subject.ysofunktioteoria
dc.subject.ysometriset avaruudet
dc.subject.ysogeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18494
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p8708
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s11854-022-0224-5
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationBoth authors were supported by the Academy of Finland, project number 308659. The first author was also supported by the Vilho, Yrjö and Kalle Väisälä Foundation. The second author was also supported by Deutsche Forschungsgemeinschaft grant SPP 2026.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright