Two‐dimensional metric spheres from gluing hemispheres
Ikonen, T. (2022). Two‐dimensional metric spheres from gluing hemispheres. Journal of the London Mathematical Society, 106(4), 3069-3102. https://doi.org/10.1112/jlms.12656
Published in
Journal of the London Mathematical SocietyAuthors
Date
2022Copyright
© 2022 the Authors
We study metric spheres (Z,dZ) obtained by gluing two hemispheres of S2 along an orientation-preserving homeomorphism g:S1→S1, where dZ is the canonical distance that is locally isometric to S2 off the seam. We show that if (Z,dZ) is quasiconformally equivalent to S2, in the geometric sense, then g is a welding homeomorphism with conformally removable welding curves. We also show that g is bi-Lipschitz if and only if (Z,dZ) has a 1-quasiconformal parametrization whose Jacobian is comparable to the Jacobian of a quasiconformal mapping h:S2→S2. Furthermore, we show that if g−1 is absolutely continuous and g admits a homeomorphic extension with exponentially integrable distortion, then (Z,dZ) is quasiconformally equivalent to S2.
Publisher
Wiley-BlackwellISSN Search the Publication Forum
0024-6107Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/147300402
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
Academy of Finland, Grant/AwardNumber: 308659; Vilho, Yrjö and Kalle Väisälä FoundationLicense
Related items
Showing items with similar title or keywords.
-
Duality of moduli in regular toroidal metric spaces
Lohvansuu, Atte (Finnish Mathematical Society, 2021)We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Quasiconformal Jordan Domains
Ikonen, Toni (Walter de Gruyter GmbH, 2021)We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y,dY). We say that a metric space (Y,dY) is a quasiconformal Jordan domain if the completion Y of (Y,dY) has finite Hausdor 2-measure, ...