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QUASICONFORMAL GEOMETRY AND REMOVABLE SETS FOR

CONFORMAL MAPPINGS

TONI IKONEN AND MATTHEW ROMNEY

Abstract. We study metric spaces defined via a conformal weight, or more
generally a measurable Finsler structure, on a domain Ω ⊂ R2 that vanishes
on a compact set E ⊂ Ω and satisfies mild assumptions. Our main question
is to determine when such a space is quasiconformally equivalent to a planar
domain. We give a characterization in terms of the notion of planar sets that
are removable for conformal mappings. We also study the question of when
a quasiconformal mapping can be factored as a 1-quasiconformal mapping
precomposed with a bi-Lipschitz map.
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1. Introduction

1.1. Overview. Let (X, dX) and (Y, dY ) be metric spaces with locally finite Haus-
dorff 2-measure. A homeomorphism f : X → Y is K-quasiconformal if there exists
K ≥ 1 such that

(1) K−1modΓ ≤ mod fΓ ≤ KmodΓ

for all path families Γ in X , where modΓ denotes the conformal modulus of Γ. The
map f is quasiconformal if it is K-quasiconformal for some K ≥ 1. This definition
is generally referred to as the geometric definition of quasiconformal mappings, and
it is one of several possible generalizations of Euclidean quasiconformal maps to the
setting of metric spaces. The definition of modulus, as well as other terms used in
this introduction, is reviewed in Section 2.

The quasiconformal uniformization problem asks one to determine which metric
spaces can be mapped onto a domain in the Euclidean plane or the 2-sphere by a
mapping that is quasiconformal, according to one of the several definitions. This
problem is based on the classical uniformization theorem, which states that every
simply connected Riemannian 2-manifold is conformally equivalent to either the
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Euclidean plane, the 2-sphere, or the hyperbolic plane. Outside the 2-dimensional
Riemannian setting, conformality is a very strong property, and it is natural to
require only quasiconformality. Motivation comes from connections to neighboring
fields such as complex dynamics [BM17] and geometric group theory [Bon06].

In the following, let (X, d) be a metric space homeomorphic to a 2-dimensional
manifold and having locally finite Hausdorff 2-measure. Such a space is referred to
in this paper as a metric surface. By quasiconformal surface, we mean a metric sur-
face (X, d) that is quasiconformally equivalent to a smooth Riemannian 2-manifold.

The uniformization problem for metric surfaces has been studied recently using
various axiomatic approaches. Rajala has proved that a metric surface X homeo-
morphic to R2 is a quasiconformal surface if and only if it satisfies a condition called
reciprocality (Definition 2.7 below) [Raj17]. Roughly speaking, this condition says
that X does not have too many more rectifiable paths, as quantified by conformal
modulus, than Euclidean space. In this case, as shown in [Rom19], there exists a
quasiconformal map f : X → Ω ⊂ R2 that satisfies the modulus inequality

2

π
modΓ ≤ mod fΓ ≤ 4

π
modΓ

for all path families Γ inX . This inequality is sharp, as can be shown by considering
the plane equipped with either the ‖·‖1- or ‖·‖∞-norm. These results are extended
to arbitrary metric surfaces in [Iko19]. A different approach was taken in a series of
papers of Lytchak and Wenger [LW17], [LW18], [LW20] based on the assumption
that the space satisfies a quadratic isoperimetric inequality.

The goal of the present paper is to understand the uniformization results de-
scribed above in the context of concrete constructions of metric surfaces. We study
a general scheme for constructing surfaces based on specifying a measurable Finsler
structure on a planar domain that vanishes on some subset of the plane. The nat-
ural problem is to decide when this construction yields a quasiconformal surface.

We provide an answer by linking the uniformization problem for metric surfaces
to a separate topic in complex analysis: removable sets for classes of holomorphic
functions. There are several notions of removability; see [You15] for a recent survey.
For us, the relevant definition is the following. A compact set E ⊂ R2 is removable

for conformal mappings if every conformal embedding f : R2 \ E → R̂2 extends

to a conformal mapping f̃ : R̂2 → R̂2, that is, to a Möbius transformation. Here,

R̂2 denotes the extended plane, which can be identified with S2 via stereographic
projection. There seems to be no standard terminology for sets satisfying this
condition. This is referred to as S-removability in the survey [You15], while the
terms set of absolute area zero and neglible set for extremal distance are also used.
Note that this is different than the notion of conformal removability, which requires

that every homeomorphism of R̂2 that is conformal on the set R̂2 \ E be a Möbius
transformation.

This connection to removable sets is natural in hindsight but does not appear
to have been made before. On the other hand, removable sets are inherently con-
nected to a different type of uniformization problem, namely of multiply connected
planar domains onto some canonical class of domain, typically slit domains or circle
domains. We recall that whether an arbitrary planar domain can be mapped con-
formally onto a circle domain is the well-known Koebe Kreisnormierungsproblem
[HS93]. We hope the present paper will add a new perspective on these various
topics.

1.2. Motivating examples. A basic observation, made in Example 2.1 in [Raj17],
is that not every metric surface is a quasiconformal surface. A simple example is
the following. Define a length pseudometric dω on R2 via the conformal weight
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ω = χR2\D. More precisely, we define the ω-length of an absolutely continuous path

γ to be ℓω(γ) =
∫
γ
ω ds, and let dω(x, y) = inf ℓω(γ), the infimum taken over all

absolutely continuous paths γ connecting x and y. If we let X be the quotient
space of R2 formed by collapsing the unit disk to a single point, then dω induces a

metric on X , denoted by d̃ω, that is locally Euclidean outside the origin. The space

(X, d̃ω), while being homeomorphic to R2, is not quasiconformally equivalent to a
planar domain. This is because the family of paths in X that intersect the collapsed
point has positive modulus, while the modulus of the family of paths intersecting
a single point in the Euclidean plane is zero. This example is included as Example
11.3 in [LW18].

A second example, and the one that comprises Example 2.1 in [Raj17], is a con-
tinuous conformal weight ω that vanishes on a Cantor set E of positive area. In
this case, dω is a metric on R2, and the identity map (R2, ‖ · ‖2) → (R2, dω) is a
homeomorphism. Nevertheless, the vanishing of the weight increases the confor-
mal modulus of path families in (R2, dω) in a way incompatible with admitting a
quasiconformal parametrization by R2.

At the other extreme, it is not hard to show that if the analogous construction
is carried out for a set E with Hausdorff dimension smaller than one, then the
resulting space is quasiconformally equivalent to the plane. Indeed, the set E is
then negligible for length and so has no effect on modulus. What happens in the
intermediate situation—when the Hausdorff dimension satisfies 1 ≤ dimHE < 2 or
when H2(E) = 0—is not a priori clear and is one of the motivations of our work.

Similar constructions appear in a number of related contexts. One of these is the
notion of strong A∞-weight introduced by David and Semmes in [DS90]. Such a
weight determines a metric on R2 that is Ahlfors 2-regular and quasisymmetrically
equivalent to the plane. Conversely, the Jacobian of a quasisymmetric mapping
from R2 to an Ahlfors 2-regular metric space induces a strong A∞-weight on R2. We
do not define this term here but refer the reader to [Sem96, Def. 1.5]. Such weights
appear naturally when trying to recognize metric spaces that are bi-Lipschitz em-
beddable in some Euclidean space. See [DS90, Sem93, Sem96, Laa02, Bis07] for
various contributions to this topic. A separate set of papers [BKR98, BHR01]
studies metrics on the unit disk defined by conformal weights satisfying a Harnack-
type inequality and an area growth condition, and shows that a number of results of
classical complex analysis have natural analogues in this setting. All of the metric
surfaces constructed in these two sets of papers are quasiconformally equivalent to
a planar domain.

In the above examples, when a space fails to be a quasiconformal surface, this
is due to the space “collapsing” on the set E where the weight vanishes. In fact, it
may be the case that this is essentially the only way that a metric surface can fail
to admit a quasiconformal parametrization. This is made precise by the following
question of Rajala and Wenger.

Question 1.1. Let (X, d) be a metric space homeomorphic to R2 with locally
finite Hausdorff 2-measure. Is there in general a domain Ω ⊂ R

2 and a surjective
continuous monotone mapping f : Ω → X such that f is in the metric Sobolev
space N1,2

loc (Ω, X) and satisfies the one-sided dilatation condition

g2f (x) ≤ KJf (x)

for some constant K ≥ 1 and almost every x ∈ Ω?

Here, gf is the minimal weak upper gradient of f and Jf is the Jacobian of f ;
see Section 2.2. We say that f : Ω → X is monotone if the preimage of every point
x ∈ X is a connected and compact subset of Ω.
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1.3. Setting and main results. We continue with a description of our setting
and main results. Let Ω be a planar domain and E ⊂ Ω be a compact set that does
not separate Ω. We consider a measurable seminorm field N : Ω×R2 → [0,∞) that
vanishes exactly on the set E and satisfies certain mild assumptions, namely lower
semicontinuity, local boundedness, and having locally bounded distortion. The
seminorm at the point x ∈ Ω is denoted throughout this paper by Nx. We think
of N as a Finsler structure on R2, determining a Finsler metric on R2, although
requiring no regularity beyond the previous assumptions.

For conciseness, and since Nx is a norm for all x ∈ Ω \ E, we use the term
norm field and not seminorm field throughout this paper when referring to N . A
norm field N satisfying the above hypotheses is said to be admissible (Definition
3.1 below). We define the N -length of an absolutely continuous path γ : I → Ω by

(2) ℓN (γ) =

∫

I

N ◦Dγ(t) dt.

In interpreting (2), note that the base point of N is understood to be γ(t) even
though this is omitted from the notation. One then obtains a pseudometric dN on
Ω by setting dN (x, y) = inf ℓN (γ), the infimum taken over all absolutely continuous
paths γ from x to y contained in Ω. Let EN denote the collection of equivalence
classes of points in R2, declaring x to be equivalent to y if dN (x, y) = 0. Then dN
determines a metric on the quotient space R2/EN denoted by d̃N . In Section 3, we
describe this construction in more detail.

We make the following definition.

Definition 1.2. The admissible norm field N is reciprocal if the corresponding

space (Ω/EN , d̃N ) is reciprocal (Definition 2.7).

The natural problem is to characterize as best as possible those norm fields N
that are reciprocal. Our first result is the following.

Theorem 1.3. Let Ω ⊂ R2 be a domain and E ⊂ Ω a compact set. If E is
removable for conformal mappings, then every admissible norm field N : Ω×R2 →
[0,∞) that vanishes exactly on E is reciprocal.

Recall that our definition of admissibility includes the statement that N is locally
bounded. It turns out that this assumption can be relaxed. In Proposition 4.5, we
show that Theorem 1.3 still holds provided there exists some p > 2 such that the
maximal stretching L(N) is in Lploc(Ω). This generalization follows fairly readily
from Theorem 1.3 by an approximation argument.

Next, we consider whether some converse to Theorem 1.3 holds. Observe first
that the strongest possible converse to Theorem 1.3 is false: a reciprocal norm field
N may vanish on a set E that is not removable for conformal mappings. As a
simple example, take E ⊂ R2 to be a snowflake arc and let N = χR2\E‖ · ‖2. Since

H1
‖·‖2

(|γ| ∩E) = 0 for every absolutely continuous path γ, we see that dN actually

coincides with the Euclidean metric. However, it is a basic fact that any set that
is removable for conformal mappings is totally disconnected.

On the other hand, if one requires that the norm field N decays fast enough near
E and N is reciprocal, then examples of the type just described are not possible. To
illustrate this, consider two admissible norm fields N1 and N2 that satisfy N1 ≤ N2.
Every path that has finite N2-length also has finite N1-length, while the opposite
may fail to be true for a large family of paths. In this sense, the space generated by
the smaller norm field N1 has more rectifiable paths and the reciprocality condition
is harder to satisfy. This leads to the following partial converse to Theorem 1.4.
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Theorem 1.4. Let Ω ⊂ R2 be a domain and E ⊂ Ω a compact set for which Ω\E is
connected, and let Np(x) = min

{
1, d‖·‖2

(x,E)p
}
‖ · ‖2. If Np is reciprocal for some

p > max {dimHE − 1, 0}, then the set E is removable for conformal mappings.

Our method of proof actually yields a stronger conclusion. The relevant property
of the norm field Np, verified in Lemma 5.1 below, is that the quotient map πN maps
E onto a set of zero 1-dimensional Hausdorff measure with respect to the metric

d̃N . Thus, for any reciprocal norm field N with this property, the corresponding
set E on which N vanishes is removable for conformal mappings. For example,
one can show that, if E is contained in a continuum F satisfying H1

‖·‖2
(F ) < ∞,

this condition on the quotient map πN is satisfied for all admissible norm fields
N vanishing on E. For such compact sets, the strongest converse to Theorem 1.3
holds. That is, if any admissible norm field N vanishing exactly on E is reciprocal,
then E is removable for conformal mappings.

The lower bound for p in Theorem 1.4 is sharp. Consider an arc E ⊂ R2 that is

bi-Lipschitz equivalent to ([0, 1] , |·|1/d) for some d ∈ (1, 2). Then E is a snowflake
arc of Hausdorff dimension d. It follows from [Sem96, Theorem 6.3] that the square
of the weight ωd−1(x) = min

{
1, d‖·‖2

(x,E)d−1
}

is a strong A∞-weight, as defined
in [Sem96, Definition 1.5], and hence the norm field Nd−1 is reciprocal. However,
the arc E is not removable for conformal mappings.

Theorems 1.3 and 1.4 show that reciprocal norm fields are almost characterized
by whether the set on which they vanish is removable for conformal mappings.
We now mention a few facts about removable sets for conformal mappings that
are known, many of them coming from a classic paper of Ahlfors–Beurling [AB50].
First, every compact set of positive Hausdorff 2-measure is not removable. Second,
every compact set of zero Hausdorff 1-measure is removable. More intriguingly,
for Cantor sets E ⊂ R × {0} of positive Hausdorff 1-measure, both outcomes are
possible. In [AB50], Ahlfors and Beurling construct Cantor sets in R × {0} of
positive H1-measure that are removable for conformal maps, as well as such Cantor
sets that are not removable. A similar example in the related context of circle
domain uniformization can be found as Theorem 11.1 of an early version of a
paper of Schramm [Sch95]. Next, by Theorem 10 in [AB50] and Proposition 3.3
in [KKR19], removable sets for conformal mappings are metrically removable: for
every ε > 0, each pair of points x, y ∈ R2 can be connected by a curve disjoint from
E\{x, y} that has length at most ‖x−y‖2+ε. See [HH08] and [KKR19] for more on
the topic of metric removability. Removable sets for conformal mappings are also
examples of the quasiextremal distance exceptional sets considered in [GM85] and
the related literature. Finally, an equivalent definition can be given by replacing
the word “conformal” with “quasiconformal” in the definition [You15, Prop. 4.7].
Thus the property of removability is invariant under quasiconformal mappings of
the complementary domain.

This should be compared with the notion of removable sets for bounded analytic
functions. The problem of characterizing such sets is known as Painlevé’s problem
and has received considerable attention, with a satisfactory resolution obtained by
Tolsa in [Tol03]. We note here that this is a stronger notion of removability: every
set that is removable for bounded analytic functions is removable for conformal
mappings. See Proposition 4.3 of [You15] for a proof. For example, a removable set
for bounded analytic functions must have Hausdorff dimension at most 1. Moreover,
according to David’s resolution of Vitushkin’s conjecture [Dav98], a compact set E
with finite Hausdorff 1-measure is removable for bounded analytic functions if and
only if it is purely 1-unrectifiable.

Finally, we remark that the notion of uniformly disconnected sets provides a
further class of examples to which these results apply. In [Sem96], Semmes studies
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metrics of the form dNp
, where Np is as in Theorem 1.4, with the additional as-

sumption that the set E is uniformly disconnected, meaning that there exists ε > 0
with the property that, for any two distinct points x, y ∈ E, there is no sequence
of points x = x0, x1, . . . , xm = y in E satisfying ‖xj−1 − xj‖2 < ε‖x − y‖2 for
all j ∈ {1, . . . ,m}. He proves that for such an E and every p > 0, the square
of the weight ωp(x) = min{1, d‖·‖

2
(x,E)p} is a strong A∞-weight and hence the

norm field Np in Theorem 1.4 is reciprocal. Therefore Theorem 1.4 implies that
uniformly disconnected Cantor sets are removable for conformal mappings. This
removability can alternatively be deduced in many ways from the existing litera-
ture. Note in particular that a uniformly disconnected set E can have Hausdorff
dimension arbitrarily close to 2.

1.4. Factorization of quasiconformal mappings. This section is motivated by
the following factorization problem. Consider a quasiconformal surface (X, d) and
corresponding isothermal parametrization f : Ω → X , where Ω is a smooth Rie-
mannian surface. Following [Iko19], a quasiconformal homeomorphism f : Ω → X
is isothermal if it is distortion-minimizing at almost every point in a suitable sense.
Roughly speaking, the pointwise distortion of f at x is the aspect ratio of the im-
age of a small ball centered at x. The existence of an isothermal parametrization
for every quasiconformal surface is established in [Iko19, Corollary 6.3]. See Sec-
tion 2.5 for the precise definition of distortion and Section 7.1 for the definition of

isothermal map. We ask: can one find a metric surface (X̂, d̂) such that f factors

as f = f̂ ◦P , where f̂ : X̂ → X is 1-quasiconformal and P : Ω → X̂ is bi-Lipschitz?
In other words, can one find a “conformal representative” for the space X within
the class of bi-Lipschitz surfaces?

If the metric is defined by a continuous reciprocal norm field of bounded distor-
tion, then such a factorization can always be found. Recall that for every domain
Ω ⊂ R2 there exists a smooth Riemannian norm field G = ω ‖·‖2 on Ω such that
(Ω, dG) is complete and has Gaussian curvature 0 or −1. We have the following
result.

Proposition 1.5. Let Ω ⊂ R
2 be a domain and N a reciprocal norm field with

distortion H . If N is continuous outside the set E = {x ∈ Ω : Nx = 0}, then there

exists a distance d̂ on Ω such that:

(i) The identity map P : (Ω, dG) → (Ω, d̂) satisfies

(3) dG(x, y) ≤ d̂(P (x), P (y)) ≤ HdG(x, y)

for all x, y ∈ Ω.

(ii) The identity map ι̂ : (Ω, d̂) → (Ω, dN ) is 1-quasiconformal.

If the identity map ι : Ω → (Ω, dN ) is isothermal, then it has distortion at most√
2 [Iko19, Cor. 4.7], and so (3) holds with H =

√
2. The example of the ℓ∞-norm

on R2 shows that the value H =
√
2 in (3) is sharp for the case of general isothermal

maps. Since every quasiconformal surface has an isothermal parametrization, this
raises the question of finding conditions on N that guarantee that the conclusion
of Proposition 1.5 holds with H =

√
2. In turn, this question is related to the reg-

ularity of the Beltrami coefficient derived from distance ellipse field corresponding
to N and does not appear to have a straightforward answer. We briefly address
this issue in Section 7.3.

In general, the conclusion of Proposition 1.5 may fail if Nx is discontinuous
outside of E. In the final part of the paper, we present a lengthy construction
giving a negative answer to the above factorization question in general. In fact, we

obtain the stronger conclusion that no quasiconformal map f̂ in such a factorization
can have distortion smaller than that of f .
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Theorem 1.6. There is a metric d on R2 such that the identity map ι : (R2, ‖·‖2) →
(R2, d) is an isothermal quasiconformal homeomorphism, but ι does not factor as

ι = ι̂ ◦ P , where (X̂, d̂) is a metric surface, ι̂ : (X̂, d̂) → (R2, d) is quasiconformal

with distortion H(ι̂) <
√
2 and P : (R2, ‖ · ‖2) → (X̂, d̂) is bi-Lipschitz.

The identity map ι in our construction has distortion H(ι) =
√
2, so the inequal-

ity H(ι̂) <
√
2 is sharp.

The metric d in Theorem 1.6 is defined via a lower semicontinuous norm field of
the form

Nx =

{
cx ‖·‖1 if x ∈ F

cx ‖·‖∞ if x /∈ F

for some measurable set F ⊂ R
2 and measurable function x 7→ cx, where 0 ≤ cx ≤ 1

and cx vanishes at a single point. Note that this fits exactly into the construction
scheme of this paper, and therefore (R2, d) is a quasiconformal surface.

One might initially expect that the metric d̂ on R2 defined by

N̂x =

{
‖·‖1 if x ∈ F√
2 ‖·‖∞ if x /∈ F

with ι̂ and P the identity map on R2, or some variation on this, gives a factorization

satisfying the properties given in Theorem 1.6. Observe that ‖·‖2 ≤ N̂ ≤
√
2 ‖·‖2

everywhere, so the map P in this situation is bi-Lipschitz. However, the map ι̂

may fail to be 1-quasiconformal. The reason for this is that the norm field N̂
corresponding to F is typically not lower semicontinuous, in which case the metric

tangents of P need not coincide with N̂x almost everywhere. Indeed, we prove
Theorem 1.6 by specifying explicitly a set F and coefficients cx for which this

failure of 1-quasiconformality occurs for the norm field N̂ defined above, and in

fact for any conformal rescaling of N̂ bi-Lipschitz equivalent to the Euclidean norm
field.

We now describe our construction in somewhat more detail. The basic idea is to
construct a sequence of nested Cantor sets Ki as the intersection of a collection of
squares in the plane. This is done so that the odd-indexed Cantor sets are formed
from squares in the standard (i.e., non-rotated) alignment, while the even-indexed
Cantor sets are formed from squares aligned diagonally. Next, the norm field on
Ki \Ki+1 for odd values of i is defined to be the supremum norm ‖·‖∞, scaled by
a constant ci satisfying ci → 0 as i → ∞, while the norm field for even values of
i is defined to be the ‖·‖1-norm, also scaled by a constant c′i satisfying c′i → 0 as
i→ ∞. A consequence of the distortion inequality for ι̂ is that the metric tangents
of P and ι cannot differ by more than a fixed amount, up to rescaling. With a
suitable choice of constants ci, c

′
i, the alternating arrangement of the Cantor sets

Ki then forces the metric tangents of P to be arbitrarily small at some points.
Lytchak–Wenger [LW18] and Creutz–Soultanis [CS19] study similar types of

factorizations for minimal disks or solutions to Plateau’s problem with metric space
target, though without trying to optimize the properties of P in the way that we
have proposed. Here, we simply remark that the map ι in our example is also an
energy-minimizing map (for the Reshetnyak energy) in the sense of these papers on
each closed disk. We refer the reader to the above papers for definitions of these
terms.

1.5. Outline. Our paper is organized as follows. Section 2 gives an overview of ba-
sic results and notation related to metric Sobolev spaces, quasiconformal mappings,
and removable sets. In Section 3, we give a detailed overview of the construction of
metric spaces from a prescribed norm field under suitable assumptions. In Section 4,
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we prove the first of the main results, Theorem 1.3, stating that an admissible norm
field is reciprocal if it vanishes exactly on a set that is removable for conformal map-
pings. In Section 5, we prove the partial converse, Theorem 1.4. Section 6 gives a
pair of examples of spaces constructed from conformal weights that each vanish on
a linear Cantor set of positive length, one of which is reciprocal and one of which
is not. Thus this can be viewed as the borderline case. Finally, Section 7 gives the
proof of Proposition 1.5 as well as the construction for Theorem 1.6.

Acknowledgments. We are thankful to Alexander Lytchak, Kai Rajala, and Atte
Lohvansuu for discussions about this project and feedback on a draft of this paper.
We also thank Dimitrios Ntalampekos and Malik Younsi for discussions related to
removable sets for conformal mappings, and in particular for Malik Younsi bring-
ing the paper [AB50] to our attention. Finally, we thank Jarmo Jääskeläinen for
discussions related to the Beltrami equation.

2. Preliminaries

2.1. Notation. In this paper, we frequently consider several metrics in close prox-
imity to one another. For this reason, we will consistently use subscripts to denote
the metric being referred to. Let (X, d) be a metric space. The open ball centered
at a point x ∈ X of radius r > 0 with respect to the metric d is denoted by Bd(x, r).

The Euclidean metric is denoted by ‖·‖2. Thus, for example, we write B‖·‖2
(x, r)

for an open ball with respect to this metric, and ds‖·‖2
for the Euclidean length

element.
We recall the definition of Hausdorff measure. Let (X, d) be a metric space. For

all p ≥ 0, the p-dimensional Hausdorff measure, or Hausdorff p-measure, is defined
by

Hp
X(A) = sup

δ>0
inf

{
α(p)

2p

∞∑

i=1

(diamAi)
p : A ⊂

∞⋃

i=1

Ai, diamAi < δ

}

for all sets A ⊂ X , where α(p) = π
p
2

(
Γ
(
p
2 + 1

))−1
. The constant α(p) is chosen

in such a way that Hn
Rn coincides with the Lebesgue measure Ln for all positive

integers.
If the space X is understood but not the metric d, then we use the notation Hp

d

instead of Hp
X . The Hausdorff dimension of a set E ⊂ X is the infimal value of

p for which Hp
X(E) = 0 and is denoted by dimHd

E. For the basics of Hausdorff
measure, see for example [AT04, Chapter 2].

Unless otherwise noted, in this paper a metric surface (X, d) is always equipped
with the Hausdorff 2-measure generated by the metric d. For example, the phrase al-
most every refers to the Hausdorff 2-measure. Similarly, an interval in R is equipped
with the Lebesgue measure L1.

A path is a continuous function from an interval into a metric space. A path in
X will typically be denoted by γ. The image of γ is denoted by |γ|. The length of
the path γ : [a, b] → X is defined as

ℓd(γ) = sup

n∑

j=1

d(γ(ti−1), γ(ti)),

the supremum taken over all finite sequences a = t0 ≤ t1 ≤ · · · ≤ tn = b. A path is
rectifiable if it has finite length.

The metric speed of a path γ : [a, b] → X at the point t ∈ [a, b] is defined as

vγ(t) = lim
h→0

d(γ(t+ h), γ(t))

t
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whenever this limit exists. If γ is rectifiable, its metric speed exists at L1-almost
every t ∈ [a, b]; see Theorem 2.1 of [Dud07].

A rectifiable path γ : [a, b] → X is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
∫ t

s

vγ(u) dL1(u)

with vγ ∈ L1([a, b]) and L1 the Lebesgue measure on the real line. Equivalently, γ
is absolutely continuous if it maps sets of L1-measure zero to sets of H1

X -measure
zero in its image; see Section 3 of [Dud07].

A path γ̃ : [c, d] → X is a reparametrization of γ if there exists a map ψ : [a, b] →
[c, d] that is surjective, non-decreasing, and continuous such that γ = γ̃ ◦ ψ. If ψ is
absolutely continuous, we say that γ̃ is an absolutely continuous reparametrization
of γ. Note that this is different from γ̃ itself being an absolutely continuous path.

Every rectifiable path γ has a reparametrization γ̃ : [0, ℓd(γ)] → X such that the
metric speed of γ̃ equals one L1-almost everywhere. In this case, we write γs = γ̃,
and refer to γs as the unit speed parametrization of γ. See Chapter 5 of [HKST15]
for details.

If γ is rectifiable, the unit speed parametrization γs is 1-Lipschitz and hence
absolutely continuous [HKST15, Proposition 5.1.8].

Let γ be a rectifiable path. Then the path integral of a Borel function ρ : X →
[0,∞] over γ is

(4)

∫

γ

ρ ds =

∫ ℓd(γ)

0

ρ ◦ γs dL1,

where L1 is the Lebesgue measure on the real line.
If γ is absolutely continuous and γ̃ is an absolutely continuous reparametrization

of γ, the chain rule for metric speeds [Dud07, Theorem 3.16 and Remark 3.4] states
that

vγ = (vγ̃ ◦ ψ)ψ′ ∈ L1([c, d]),

where the right-hand side is understood to be zero whenever the derivative ψ′ = 0
(even if vγ̃ ◦ ψ is not defined or is infinite at such a point).

Moreover, for absolutely continuous γ, the unit speed parametrization γs is an
absolutely continuous reparametrization of γ. Therefore (4) can be restated for
absolutely continuous γ : [a, b] → X as follows:

∫

γ

ρ ds =

∫ b

a

(ρ ◦ γ)vγ dL1.

Given a Borel set A ⊂ X , the length of a path γ : [a, b] → X in A is defined as∫
X
#(A∩γ−1(x)) dH1

X (x), where #(A∩γ−1(x)) is the multiplicity of γ in A. This
formula makes sense for paths that are not necessarily rectifiable; see Theorem
2.10.13 [Fed69]. If γ is rectifiable, the number coincides with the path integral of
χA over γ.

2.2. Metric Sobolev spaces. In this section, we give an overview of the theory
of Sobolev spaces in the metric space setting. We refer the reader to the book
[HKST15] for a comprehensive introduction to this topic. Throughout this sec-
tion, assume that (X, dX) and (Y, dY ) are each a metric surface: a metric space
homeomorphic to a 2-dimensional manifold with locally finite Hausdorff 2-measure.

The conformal modulus provides a basic way of measuring the size of a family of
paths. It is a conformal invariant in the Euclidean case, which accounts for both its
nomenclature and its usefulness. Let Γ be a family of paths in X . A Borel function
ρ : X → [0,∞] is admissible for the path family Γ if the path integral

∫
γ
ρ ds ≥ 1
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for all locally rectifiable paths γ ∈ Γ. The conformal modulus, or simply modulus,
of Γ is

modΓ = inf

∫

X

ρ2 dH2
X ,

where the infimum is taken over all admissible functions ρ.
If ρ is admissible for a path family Γ′ ⊂ Γ such that Γ \ Γ′ has modulus zero,

then ρ is said to be weakly admissible for Γ. If a property holds for every path
γ ∈ Γ except in a subfamily of modulus zero, then this property is said to hold
on almost every path. If modΓ < ∞, then there exists a weakly admissible Borel
function ρ ∈ L2(X) such that

modΓ =

∫

X

ρ2 dH2
X .

Such a ρ is called a minimizer of Γ. Such a minimizer is unique H2
X -almost every-

where.
Let f : (X, dX) → (Y, dY ) be a mapping between metric surfaces X and Y . A

function g : X → [0,∞] is an upper gradient of f if

dY (f(x), f(y)) ≤
∫

γ

g ds

for every rectifiable path γ : [0, 1] → X connecting x to y. The function g is a weak
upper gradient of f if the same holds for almost every rectifiable path.

The weak upper gradient g ∈ L2
loc(X) is minimal if it satisfies g ≤ g̃ almost

everywhere for all weak upper gradients g̃ ∈ L2
loc(X) of f . If f has a weak upper

gradient g ∈ L2
loc(X), then f has a minimal weak upper gradient, which we denote

by gf . The existence of gf follows from the fact that the weak upper gradients of f
form a lattice. This also implies that gf is unique up to measure zero; see Section
6 of [HKST15] and Section 3 of [Wil12] for details. In general, gf is only a weak
upper gradient.

Proposition 6.3.3 of [HKST15] and countable subadditivity of modulus (see also
Lemmas 3.2 and 3.3 of [Wil12]) establish that a Borel function ρ : X → [0,∞]
belonging to L2

loc(X) is a weak upper gradient of f if and only if for almost every
absolutely continuous path γ : [a, b] → X , the composition f ◦ γ is an absolutely
continuous path for which the metric speeds vf◦γ and vγ satisfy

(5) vf◦γ ≤ (ρ ◦ γ)vγ

L1-almost everywhere on [a, b]. Since ρ ∈ L2
loc(X) the right-hand side of (5) is

integrable on its domain for almost every γ.
Let Z be a metric space such that H2

dZ
(Z) < ∞. Choose a point y ∈ Y , and

let dy = dY (·, y). The space L2(Z, Y ) is defined as the set of measurable mappings
f : Z → Y such that dy ◦ f is in L2(Z). One can check that this definition is
independent of the choice of y.

We define L2
loc(X,Y ) to consist of those measurable mappings f : X → Y for

which, for all x ∈ X , there is an open set U ⊂ X containing x such that f |U is in
L2(U, Y ).

The metric Sobolev space N1,2
loc (X,Y ) consists of those mappings f : X → Y in

L2
loc(X,Y ) that have a minimal weak upper gradient gf ∈ L2

loc(X).
For open U ⊂ X with H2

X(U) < ∞, we say that f ∈ N1,2(U, Y ) if f |U ∈
N1,2

loc (U, Y ) in such a way that gf |U ∈ L2(U) and for some y ∈ Y , fy(x) = dy ◦f |U ∈
L2(U).
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Next we define the Jacobian of f for continuous f : X → Y . The pullback measure
f∗H2

Y is defined for Borel sets A ⊂ X by the formula

f∗H2
Y (A) =

∫

Y

#(A ∩ f−1(y)) dH2
Y ,

where #(A ∩ f−1(y)) is the multiplicity function of f relative to A. The measure
f∗H2

Y can be defined equivalently using a suitable Carathéodory construction; see
[Fed69, 2.10.10]. In fact, f∗H2

Y is a Borel regular outer measure.
If the pullback measure f∗H2

Y is locally finite, we say that the Jacobian of f is the
Radon–Nikodym derivative of f∗H2

Y with respect to H2
X . The Jacobian is denoted

by Jf . The local finiteness of f∗H2
Y and H2

X imply that Jf is locally integrable. See
Sections 3.1-3.2 in Volume I of [Bog07] for details on the Radon–Nikodym derivative
of a measure.

2.3. Seminorms. We introduce the terminology and notation we use for semi-
norms. Recall that a seminorm S on R2 is a function S : R2 → [0,∞) satisfying
the following conditions for all v, w ∈ R

2 and λ ∈ R:

(i) (absolute homogeneity) S(λv) = |λ|S(v) whenever λ ∈ R and v ∈ R2;
(ii) (triangle inequality) S(v + w) ≤ S(v) + S(w).

The seminorm S is a norm if it has the additional property that S(v) = 0 only if
v = 0. The maximal stretching of S is

(6) L(S) = sup {S(v) : ‖v‖2 ≤ 1} .
The minimal stretching of S is

(7) ω(S) = inf {S(v) : ‖v‖2 ≥ 1} .
The Jacobian of the seminorm S is

J2(S) =
π

L2 ({v : S(v) ≤ 1}) .

Observe that J2(S) = 0 in the case that N is only a seminorm. The distortion of
S is

(8) H(S) =
L(S)

ω(S)

if ω(S) > 0 and H(S) = ∞ otherwise. The latter case occurs if S is a non-zero
seminorm that is not a norm. The outer dilatation and inner dilatation of S are
defined by, respectively,

KO(S) =
L(S)2

J2(S)
, KI(S) =

J2(S)

ω(S)2

if J2(S) > 0, and KO(S) = KI(S) = ∞ otherwise. The maximal dilatation of S is
K(S) = max{KO(S),KI(S)}. Observe that KO(S) ≥ 1 and KI(S) ≥ 1.

The seminorm S induces a pseudometric dS on R
2 by the formula dS(x, y) =

S(x − y). The identity map ιS : (R
2, ‖·‖2) → (R2, dS) has the constant function

L(S) as its minimal weak upper gradient and J2(S) as its Jacobian. Its inverse ι−1
S

has the constant function ω(S)−1 as its minimal weak upper gradient.
The following lemma gives a relationship between the maximal dilatation and

distortion.

Lemma 2.1. The distortion H(S) and maximal dilatation K(S) of S satisfy
H(S) ≤ K(S) ≤ H(S)2.
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Proof. If ω(S) = 0, then H(S) = K(S) = ∞. Otherwise, H(S) and K(S) are
both finite. Observe the relationship H(S)2 = KO(S)KI(S) ≤ K(S)2. On the
other hand, the relationships KO(S) ≥ 1 and KI(S) ≥ 1 imply respectively that
H(S)2 ≥ KI(S) and H(S)2 ≥ KO(S). We conclude that H(S)2 ≥ K(S). �

2.4. Metric derivatives of Lipschitz mappings. Throughout this section, we
let Ω denote a domain in R2 and (X, d) denote a metric space. We refer to Sec-
tion 2.3 for basic terminology about seminorms.

Definition 2.2. Let f : (Ω, ‖ · ‖2) → (X, d) be a Lipschitz map. For all x ∈ Ω and
v ∈ R

2, the metric derivative of f at x in the direction v is

(9) Nf,x(v) = lim sup
t→0+

d(f(x), f(x + tv))

t
.

A result by Ivanov [Iva08] states the following. Similar results are proved in
[Kir94, DCP90, DCP91, DCP95].

Theorem 2.3. Let f : (Ω, ‖ ·‖2) → (X, d) be a Lipschitz map. There exists a Borel
set N0 ⊂ Ω of zero Lebesgue measure such that, for all x ∈ Ω \N0 and all v ∈ R2,
the limit superior in (9) is an actual limit, and v 7→ Nf,x(v) is a seminorm for every
x ∈ R2 \N0.

As a consequence of Theorem 2.3, the metric derivative of a Lipschitz map defines
a seminorm field on Ω.

Proposition 2.4. Let f : Ω → X be a Lipschitz function and Nf its metric deriv-
ative. The maximal stretching x 7→ L(Nf (x)) is a minimal weak upper gradient of
f , and f satisfies the change of variables formula

(10)

∫

Ω

ρ(z)J2(Nf,z) dL2(z) =

∫

X

∫

f−1(x)

ρ(y)dH0(y) dH2
d(x)

for all Borel functions ρ : Ω → [0,∞].

Proof. Theorem 2.3 implies that the metric derivative, as defined in Definition 2.2,
coincides with the metric derivative of Kirchheim [Kir94] L2-almost everywhere
in Ω. Kirchheim proves the change of variables formula (10) as Corollary 8 in
[Kir94]. That L(Nf ) is a minimal weak upper gradient of f is proved in Section 4
of [LW17]. �

The metric differential can be used to compute the metric speed of an absolutely
continuous path.

Lemma 2.5. If γ : [a, b] → Ω is an absolutely continuous path, then for almost
every t ∈ [a, b], the metric speed vf◦γ(t) of f ◦ γ exists and satisfies

vf◦γ(t) = Nf ◦Dγ(t),

where Dγ(t) is the derivative of γ at t.

Proof. Ivanov proves in Proposition 2.7 of [Iva08] that ℓd(f ◦ γ) = ℓNf
(γ) for ev-

ery Lipschitz path γ : [a, b] → R2. Since every absolutely continuous path has a
Lipschitz parametrization, the same result holds for absolutely continuous paths
γ : [a, b] → R2. The lemma now follows from the Lebesgue differentiation theo-
rem. �
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2.5. Quasiconformal mappings. Recall the geometric definition of quasiconfor-
mal mapping given in (1). A result of Williams is that this geometric definition
is equivalent to an analytic definition based on metric Sobolev spaces. We state
the two-dimensional case of this result, or rather a generalization to the case of
continuous monotone maps.

Theorem 2.6 (cf. [Wil12]). Let X and Y be metric surfaces with locally finite
Hausdorff 2-measure. Let f : X → Y be continuous and monotone and suppose
that the pullback measure f∗H2

Y is locally finite. The following are equivalent for
the same constant K ≥ 1:

(i) modΓ ≤ Kmod fΓ for all path families Γ in X .

(ii) f ∈ N1,2
loc (X,Y ) and satisfies

g2f (x) ≤ KJf (x)

for H2
X -almost every x ∈ X .

Theorem 2.6 can be established using the original proof in [Wil12] with slight
modifications which deal with the multiplicity of f . This is omitted here. A similar
result can be found as Proposition 3.5 of [LW20].

The outer dilatation of f is the smallest constant K ≥ 1 for which the modulus
inequality modΓ ≤ Kmod fΓ holds for all Γ in X . The inner dilatation of f is the
smallest constant K ≥ 1 for which mod fΓ ≤ KmodΓ holds for all Γ in X . These
are denoted respectively by KO(f) and KI(f). Thus a quasiconformal map is a
homeomorphism with finite outer and inner dilatation. The pointwise distortion of
f at x ∈ X is

(11) Hf (x) = gf(x)gf−1(f(x)).

We interpret (11) as Hf (x) = 1 whenever gf (x) = 0 or gf−1(f(x)) = 0. A conse-
quence of Proposition 3.4 and Corollary 3.8 in [Iko19] is that Hf (x) is independent
of the representatives of gf and gf−1 H2

X -almost everywhere. Moreover, Corollary

3.12 of [Iko19] implies that Hf (x) ≤
√
KO(f)KI(f) for H2

X -almost every x ∈ X .
The smallest constant H ≥ 1 for which Hf (x) ≤ H for H2

X -almost every x ∈ X is
called the distortion of f and denoted by H(f).

Consider now a quasiconformal map f : Ω ⊂ R2 → X that is also Lipschitz.
Then the equalities gf (x) = L(Nf,x) and gf−1 ◦ f(x) = (ω(Nf,x))

−1 hold for L2-
almost every x ∈ Ω [Iko19, Proposition 4.8]. Consequently, we have the equality
Hf (x) = H(Nf,x) for L2-almost every x ∈ Ω.

In general, a quasiconformal map f : Ω ⊂ R2 → X must satisfy Lusin’s Condition
(N−1): for every Borel set E ⊂ Ω of positive Lebesgue measure, f(E) has positive
Hausdorff 2-measure. This is essentially proved in Remark 8.3 or Section 17 of
[Raj17]. On the other hand, f need not satisfy Lusin’s Condition (N): for every
Borel set E ⊂ Ω of zero Lebesgue measure, f(E) has zero Hausdorff 2-measure.
An example of this is given as Proposition 17.1 of [Raj17]. Generalizations of these
results are considered in Section 3 of [Iko19].

A uniformization theorem for quasiconformal mappings was proved by Rajala
based on the notion of reciprocality [Raj17]. Let X be a metric surface. For a set
G ⊂ X and disjoint sets F1, F2 ⊂ G, let Γ(F1, F2;G) denote the family of paths
whose images are contained in G that start from F1 and end in F2. A quadrilateral
is a set Q homeomorphic to [0, 1]2 with boundary consisting of four nonoverlapping
boundary arcs, labelled ξ1, ξ2, ξ3, ξ4 in cyclic order.

Definition 2.7. A metric surface X is reciprocal if there exists a constant κ ≥ 1
such that

modΓ (ξ1, ξ3;Q)modΓ (ξ2, ξ4;Q) ≤ κ(12)
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for every quadrilateral Q ⊂ X , and

(13) lim
r→0+

modΓ
(
B(x, r), X \B(x,R);B(x,R)

)
= 0

for all x ∈ X and R > 0 such that X \B(x,R) 6= ∅.
Note that, for all metric surfaces, the product in (12) is bounded from below by

a universal constant κ̃ > 0 [RR19]. We say that a reciprocal surface is κ-reciprocal
if (12) and the corresponding lower bound hold for the constant κ.

Theorem 1.4 in [Raj17] states that a metric surface X homeomorphic to R2 is
reciprocal if and only if there exists a quasiconformal homeomorphism onto the
disk or the Euclidean plane. This result is extended to arbitrary metric surfaces in
[Iko19]. More precisely, Theorem 1.3 in [Iko19] states that a metric surface X is
locally reciprocal (that is, every point in X has a neighborhood that is reciprocal)
if and only if X is quasiconformally equivalent to a smooth Riemannian 2-manifold.
In particular, a metric surface that is locally reciprocal is also globally reciprocal.

2.6. Removable sets for conformal mappings. We collect some background
on removable sets for conformal mappings. Recall from the introduction that the
compact set E ⊂ R2 is removable for conformal mappings if every conformal em-

bedding f : R2 \ E → R̂2 extends to a conformal mapping F : R̂2 → R̂2. Thus f is
the restriction of a Möbius transformation.

This notion exists under several names, including sets of absolute area zero and
negligible sets for extremal distance. This nomenclature reflects the following char-
acterization.

Proposition 2.8. Let E ⊂ R2 be compact. The following are equivalent.

(i) E is removable for conformal mappings.

(ii) E has absolute area zero: for every conformal embedding f : R2 \E → R̂2,

the complementary set R̂2 \ f(R2 \E) has Lebesgue measure zero.
(iii) E is negligible for modulus: for every domain Ω ⊂ R2 and pair of disjoint

compact sets F,G ⊂ Ω \ E, modΓ(F,G; Ω) = modΓ(F,G; Ω \ E).

(iv) Any quasiconformal embedding f : R2 \ E → R̂
2 has an extension to a

quasiconformal mapping F : R̂2 → R̂2.
(v) For any open set U ⊂ R2, every quasiconformal mapping on U \E extends

quasiconformally to the whole open set U .

The equivalence of (i), (ii) and (iii) is proved in [AB50]. The equivalence of (i)
and (iv) is a consequence of the measurable Riemann mapping theorem. See Propo-
sition 4.7 in [You15] for a proof. The equivalence of (i) and (v) can also be found
in [You15] as Proposition 4.6. We see from (iv) and (v) that removability for con-
formal mappings is a local property and a quasiconformal invariant. If E contains
a nontrivial connected component E0, then there is a non-Möbius conformal map
f : R2 \ E0 → R2 such that R2 \ f(R2 \ E0) is the closed unit disk. Thus Property
(ii) implies that a removable set for conformal mappings is totally disconnected.

Property (iii) in Proposition 2.8 indicates the connection between quasiconformal
uniformization and removable sets. Observe that for each triple F , G, and Ω,
Γ(F,G; Ω \ E) is a subset of Γ(F,G; Ω) and thus satisfies modΓ(F,G; Ω \ E) ≤
modΓ(F,G; Ω). In contrast, the metric space constructions in our paper collapse
a domain at the set E and hence increase the modulus of a path family, up to a
factor related to the dilatation bound of the norm field. Thus Theorem 1.3 and
Theorem 1.4 can be summarized roughly by saying that removing the set E does
not decrease the modulus of any path family if and only if collapsing the plane at E
does not increase the modulus of any path family.
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3. Constructing a metric from a norm field

In this section, we give a description of the metric spaces considered in this paper
and develop their basic properties. These spaces are constructed from measurable
Finsler structures satisfying additional assumptions. The precise definition is given
in Section 3.1.

There is a vast literature on Riemannian and Finsler geometry, typically requiring
smoothness or at least continuity of the metrics. The idea of constructing metrics
from Finsler structures with less regularity has been considered by various previous
authors, and so the material in this section is more-or-less standard. In Section 3.2,
we include a brief comparison with the existing literature.

We consider here seminorm fields N such that either Nx is a norm or Nx = 0
for all x ∈ Ω. Recall from the introduction that, slightly abusing terminology, we
use the term norm field to refer to an object of this type. Since a vector v ∈ R2

often comes with an implicit basepoint x, we will sometimes write N(v) in place of
Nx(v), such as in the expression N ◦Dγ.

3.1. Definition of the metric. Let Ω ⊂ R2 be a domain.

Definition 3.1. A norm field N : Ω × R2 → [0,∞) is admissible if it satisfies the
following:

(i) (lower semicontinuous) For all vectors v ∈ R2 and points x ∈ Ω, we have
Nx(v) ≤ lim infy→xNy(v).

(ii) (locally bounded) For all x ∈ Ω, there is a neighborhood U of x and M > 0
such that L(Ny) ≤M for all y ∈ U .

(iii) (locally bounded distortion) For all x ∈ Ω, there is a neighborhood U of x
and H > 0 such that L(Ny) ≤ Hω(Ny)) for all y ∈ U .

(iv) (nonseparating) The set E = {x ∈ Ω : Nx = 0} is compact and Ω \ E is
connected.

An immediate consequence of having locally bounded distortion is that Nx(v) =
0 for some v ∈ R

2 \ {0} if and only if Nx is identically zero.
We use the norm field N to measure the length of an absolutely continuous path

γ : [a, b] → Ω in the following way. We define the N -length of γ to be

ℓN (γ) =

∫ b

a

N ◦Dγ(t) dt,

where Dγ : [a, b] → Ω× R2 is a Borel representative of the differential of γ.

Definition 3.2. Let N be an admissible seminorm field and x, y ∈ Ω. The N -
distance between x and y is defined as

dN (x, y) = inf ℓN (γ),

where the infimum is taken over absolutely continuous paths γ joining x to y in Ω.

The function dN is locally finite and satisfies the triangle inequality, but it may
happen that dN (x, y) = 0 for distinct points x, y ∈ Ω. Thus, in general, dN is only
a pseudodistance. Let EN be the partition of Ω into equivalence classes of points,
where x, y ∈ Ω belong to the same equivalence class if dN (x, y) = 0. This yields
the quotient space Ω/EN and the natural quotient map πN : Ω → Ω/EN . The space
Ω/EN comes equipped with the metric that is the pushforward of dN under πN ,

which we denote by d̃N .
A consequence of the local boundedness of N is that the quotient map πN is

locally Lipschitz. In particular, the results described in Section 2.4 apply to the
map πN .
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3.2. Remarks on definition of admissible norm fields. We offer a few remarks
about Definition 3.1 and give a comparison to the previous literature.

The lower semicontinuity assumption guarantees that the metric tangents of
Ω/EN coincide with N almost everywhere. This implies, for example, that two
conformally equivalent norm fields generate metrics that are 1-quasiconformally
equivalent. In general, the metric tangents are not so well-behaved. For example,
let F ⊂ [0, 1] be a Cantor set of positive linear measure, and let E = F × F ⊂ R2.
The norm field N defined by

Nx =

{
2‖ · ‖∞ if x ∈ E

‖ · ‖1 if x /∈ E

generates the same metric as the norm field ‖ · ‖1, despite the fact that they differ
on a positive measure set. Indeed, the inequality ‖x− y‖1 ≤ dN (x, y) is immediate
for all x, y ∈ R2, since ‖ · ‖1 ≤ 2‖ · ‖∞. On the other hand, for all x, y ∈ R2 \ E,
there is an ℓ1-geodesic from x to y lying in R2 \ E. Thus dN (x, y) ≤ ‖x − y‖1 for
such x, y. Since E has empty interior, we obtain the inequality dN (x, y) ≤ ‖x− y‖1
for all x, y ∈ R2. The lower semicontinuity assumption allows us to avoid this type
of behaviour; see Lemma 3.6 below.

The fact that E = {x ∈ Ω: Nx = 0} is non-separating guarantees that the quo-
tient space is homeomorphic to Ω (Corollary 3.9). For example, if E is the Euclidean
unit circle and N = χR2\E ‖·‖2, the resulting quotient space is not a 2-manifold.

Now we discuss some of the related literature on non-smooth Finsler metrics.
Perhaps the first investigations into this topic were carried out by Busemann–
Mayer in [BM41]. Beginning in the 1940s, the Russian school led by Alexandrov
developed a theory of surfaces of bounded curvature, also now known as Alexandrov
surfaces, as a generalization of two-dimensional Riemannian geometry. See [AZ67]
and [Res93] for an overview.

Finsler metrics on Lipschitz manifolds were systematically studied by De Cecco–
Palmieri in the series of papers [DCP88, DCP90, DCP91, DCP95]. Note that they
take a different approach to defining the distance dN from a norm field N . The
idea is to make the distance more robust by making the definition insensitive to
changes in N on a set of measure zero. In particular, the norm field N need only
be defined on a full measure subset. This is achieved as follows. For a set F ⊂ R2

of measure zero, let ΓF be the family of absolutely continuous paths that intersect
F in a set of length zero. Then one defines the metric dN,F as in Definition 3.2
but restricting to paths in ΓF . Next one defines DN (x, y) = sup dN,F (x, y), the
supremum taken over all measure zero sets F . This is called the intrinsic distance
in [DCP95, GPP06] and essential metric in [AHPCS18] and further investigated in
[CS19]. Observe that if N is continuous, then the essential metric coincides with
the metric considered in this paper. However, we do not take this approach, since
the norm fields we have in mind typically vanish on a set of measure zero, and we
prefer the additional flexibility of only requiring N to be lower semicontinuous.

3.3. Properties of length. In the remainder of this section, we establish prop-
erties of admissible norm fields and their corresponding metric. Our first lemma
states that the property of lower semicontinuity of N in each direction v can be
promoted to lower semicontinuity at a point in all directions uniformly.

Lemma 3.3. Let N be an admissible norm field and x ∈ Ω. For every ε > 0, there
exists r > 0 such that

Ny(v) ≥ (1− ε)Nx(v).

for all y ∈ B(x, r) and v ∈ R2.
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Proof. If Nx is the zero seminorm, then the conclusion follows immediately. Thus
we may assume that Nx is a norm. By the positive homogeneity of N , we need
only consider vectors v ∈ S1. Let ε > 0 and let δ = εω(Nx), so that Nx(v) − δ ≥
(1−ε)Nx(v) for all v ∈ R

2. Thus it suffices to show that there exists a radius r > 0
such that

Ny(v) ≥ Nx(v) − δ

for all y ∈ B(x, r) and v ∈ S1.
Assume to the contrary that no such r exists. Then there exist sequences (yn) ⊂

Ω and (vn) ⊂ S1 for which

(14) Nyn(vn) < Nx(vn)− δ

for all n ∈ N. By passing to a subsequence, we have that vn converges to some
vector v ∈ S1.

Let M > 0 be such that L(Ny) ≤ M for all y in a neighborhood of x. Then for
every sufficiently large n ∈ N,

Nx(vn)−M ‖v − vn‖2 ≤ Nx(v)

and

Nyn(v) ≤ Nyn(vn) +M ‖v − vn‖2 .
Moreover, the lower semicontinuity of N implies that

Nx(v) −
δ

2
≤ Nyn(v)

for all sufficiently large n ∈ N. Combining these inequalities yields

Nx(vn)−
(
2M ‖v − vn‖2 +

δ

2

)
≤ Nyn(vn).

Let n be sufficiently large so that ‖v − vn‖2 < δ(4M)−1. Then the preceeding
inequality contradicts (14), and the result follows. �

The next lemma shows that the metric dN is locally well-behaved outside of the
set E.

Lemma 3.4. Let N be an admissible norm field. For all x ∈ Ω \ E, there exists
r > 0 such that B(x, r) ⊂ Ω \ E and the quotient map πN is bi-Lipschitz in the
neighborhood B(x, r).

Proof. We let ω(x) = ω(Nx) denote the minimal stretching of N . Lemma 3.3
implies that ω is lower semicontinuous. Also ω(x) = 0 if and only if Nx is a
seminorm.

Let x ∈ Ω \ E. Let R > 0 be such that the closed ball B(x,R) is contained in
Ω \ E and satisfies ω(z) ≥ ω(x)/2 for all z ∈ B(x,R). Such an R > 0 exists by
the lower semicontinuity of the map z 7→ ω(z). Moreover, the local boundedness of
N implies that the maximal stretching L(Nz) is bounded from above by M for all
z ∈ B(x,R). We conclude that

ω(x)

2
‖v‖2 ≤ Nz(v) ≤M ‖v‖2

for all z ∈ B(x,R) and all v ∈ R
2.

Let r = R/2. We claim that

ω(x) ‖y − z‖2
4

≤ dN (y, z) ≤M ‖y − z‖2
for all y, z ∈ B(x, r). Clearly, the line segment from y to z has N -length at most
M ‖y − z‖2. For the lower bound, consider an arbitrary absolutely continuous
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path γ from y to z. If |γ| ⊂ B(x,R), then we have the lower bound ℓN (γ) ≥
ω(x) ‖y − z‖2 /2. If |γ| is not contained in B(x,R), then its length is at least

ω(x)(R − r) =
ω(x)R

2
≥ ω(x) ‖y − z‖2

4
.

Since our path is arbitrary, we obtain dN (y, z) ≥ ω(x) ‖y − z‖2 /4. We conclude
that dN is bi-Lipschitz equivalent to the Euclidean distance on B(x, r). �

Lemma 3.5. For L2-almost every x ∈ Ω, the metric derivative NπN
of πN at x

satisfies

NπN ,x ≤ Nx.

Moreover, for every x ∈ Ω,

Nx ≤ NπN ,x .

In particular, the metric derivative NπN
equals N L2-almost everywhere in x ∈ Ω.

Proof. First, we show that the upper bound NπN ,x ≤ Nx holds L2-almost every-
where in Ω. Consider a fixed v ∈ R2 \ {0}. The local boundedness of N implies
that the function x 7→ Nx(v) is locally integrable. Consider a rectangle R ⊂ Ω with
one side parallel to v. There is a family of parallel line segments γt : [0, h0] → R,
γt(s) = xt + vs, that foliate R. Observe that for all t and s, Dγt(s) = v. The
definition of dN implies that

NπN ,γt(s)(v) ≤ lim sup
h→0+

1

h

∫

[s,s+h]

Nγt(a)(v) dL1(a).

According to Lebesgue’s differentiation theorem, the lim sup on the right-hand side
equals Nγt(s)(v) for L1-almost every s ∈ [0, h0]. Fubini’s theorem implies that

NπN ,x(v) ≤ Nx(v)

holds L2-almost everywhere in R. Since R is arbitrary, the same conclusion holds
for almost every point in Ω. The first inequality follows.

Next, we show that the inequality Nx ≤ NπN ,x holds for all x ∈ Ω. In the case
that x ∈ E, the conclusion is immediate since then Nx = 0. We consider now the
case that x ∈ Ω \ E. Let v ∈ R2 \ {0} and let ε > 0.

Let r > 0 be such that the conclusions of Lemma 3.3 and Lemma 3.4 hold for
the point x and the given value of ε. In particular, Lemma 3.4 implies that there
exists α > 0 such that

α−1dN (y, z) ≤ ‖y − z‖2 ≤ αdN (y, z)

for all y, z ∈ B(x, r). Moreover, the local boundedness of N implies that there
exists M > 0 such that the maximal stretching L(Ny) ≤M for all y ∈ B(x, r). Let

t0 =
1

‖v‖2
r

2α
min

{
1

α
,

1

εM

}
.

For all t ∈ (0, t0), consider an absolutely continuous path γt : [0, 1] → Ω joining x
to x+ tv that satisfies

(15)

∫ 1

0

N ◦Dγt dL1 ≤ dN (x, x+ tv) + εtNx(v).

The right-hand side of (15) is bounded above by αt ‖v‖2 + εMt ‖v‖2 < r/α. In
particular, this implies that

(16) |γt| ⊂ B‖·‖(x, r).

Next, observe that

(17) tNx(v) = Nx(tv) ≤M‖tv‖2 ≤ αMdN (x, x+ tv).



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 19

Applying now the conclusion of Lemma 3.3 along γt, which is allowed due to (16),
we have

(18) (1− ε)Nx(Dγt(s)) ≤ N ◦Dγt(s),

for almost every s ∈ [0, 1]. Note that the norm field N on the left-hand side has a
fixed basepoint.

Since straight line segments are geodesics with respect to the norm Nx, by inte-
grating both sides of (18) and applying (15) and (17), we obtain

(19) (1− ε)Nx(tv) ≤ (1 + εαM)dN (x, x+ tv).

We divide both sides of (19) by t and let t→ 0. We have

(1− ε)Nx(v) ≤ (1 + εαM) lim inf
t→0

dN (x, x+ tv)

t
.

The lim inf on the right-hand side is bounded from above by the metric derivative
NπN ,x(v). The result follows by letting ε→ 0. �

Lemma 3.6. For every Borel function ρ : Ω/EN → [0,∞], we have the change of
variables formula ∫

Ω

ρ ◦ πNJ2(N) dL2 =

∫

Ω/EN

ρ dH2
d̃N
.

Proof. We proved in Lemma 3.5 the fact that the metric derivative of πN equals
N L2-almost everywhere. Then the change of variables formula Proposition 2.4
implies that H2

d̃N
(πN (E)) = 0. The fact that πN is injective in the complement of

E implies that the multiplicity term from Proposition 2.4 can be omitted. �

Lemma 3.7. For every absolutely continuous path γ in Ω, ℓN(γ) = ℓdN (πN ◦ γ).
In particular, the equality

(20) vπN◦γ = N ◦Dγ

holds almost everywhere in the domain of γ.

Proof. An immediate consequence of the definitions is that ℓd̃N (πN ◦ γ) ≤ ℓN (γ)
for every absolutely continuous γ in Ω. For the other direction, let L denote the
NπN

-length of γ:

L =

∫

I

NπN
◦Dγ(t) dL1(t).

Since N(x) ≤ NπN
(x) for all x ∈ Ω by Lemma 3.5, we see that ℓN (γ) ≤ L. By

Lemma 2.5, the equality L = ℓd̃N (πN ◦γ) holds for all absolutely continuous γ. The

equality ℓN (γ) = ℓd̃N (πN ◦ γ) now follows. The metric speed identity (20) follows
from the Lebesgue differentiation theorem. �

As a consequence of the previous lemma, whenever γ : I → Ω is an absolutely
continuous path, we have the integral formula

∫

πN◦γ

ρ dsN =

∫

I

(ρ ◦ πN )(N ◦Dγ) dL1

for all Borel measurable functions ρ : Ω/EN → [0,∞].
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3.4. The quotient map.

Proposition 3.8. The quotient map πN : Ω → Ω/EN is locally Lipschitz, locally
bi-Lipschitz in the complement of E, and its restriction to Ω \ E is injective.

Moreover, the map πN is closed and, for all x ∈ πN (E), the preimage π−1
N (x) is

a connected and compact subset of E.

Proof. We already proved in Lemma 3.4 that πN is locally bi-Lipschitz outside of
E. Moreover, since N is locally bounded, πN is locally Lipschitz at all points in Ω.

Next, let x ∈ Ω \E and U ⊂ Ω \E be a neighborhood of x such that πN |U is bi-
Lipschitz. The bi-Lipschitz property implies that dN (x, y) > 0 for all y ∈ U . Next,
let r > 0 be small enough so that B‖·‖(x, r) ⊂ U , and let c = inf{dN (x, y) : y ∈
S‖·‖(x, r)} > 0. If y ∈ Ω \ U , then any path from x to y must intersect S‖·‖(x, r),
which gives dN (x, y) ≥ c > 0. We conclude that πN is injective in the complement
of E.

Next, we prove that π−1
N (x̃) is a connected compact subset of E for all x̃ ∈ πN (E).

Let x ∈ π−1
N (x̃) and let K be the component of E containing x.

Let γ be a closed Jordan path in Ω \ E that separates K and the boundary of
∂Ω. See [Why64, Section III.3] for the existence of such a path γ. Let U be the
complementary component of |γ| containing K.

Let c = inf
{
dN (x, z) : z ∈ Ω \ U

}
. The image |γ| has a small neighborhood V

compactly contained in Ω \ E. Every path joining the point x to Ω \ U must pass
through V . The lower semicontinuity of N implies that N ≥ α ‖·‖2 in V for some
α > 0 and hence that c > 0.

Let y ∈ π−1
N (x̃). Let (γn) be a sequence of Lipschitz paths joining x to y satisfying

ℓN(γn) ≤ 2−nc

for all n ∈ N. Observe that the image of each path γn is contained in U . Moreover,
for every zn ∈ |γn|, we have that dN (x, zn) ≤ 2−nc. This implies that a subsequence
of the sets (|γn|) converges with respect to the Hausdorff distance to a connected
subset of π−1

N (x̃) ∩ U . This is a consequence of general properties of Hausdorff
convergence in metric spaces; see Proposition 4.4.14 and Theorems 4.4.15 and 4.4.17
in [AT04]. Since y is arbitrary, we conclude that π−1

N (x̃) is connected.

Next, we check that π−1
N (x̃) ⊂ K. Observe that, for a given point z ∈ Ω \

K, the Jordan path γ above can be chosen so that K and z are contained in
different complementary components. An argument similar to that above shows
that dN (K, z) > 0.

The final step is to show that πN is closed. Let F ⊂ Ω be a closed set and let x̃
be a limit point of πN (F ). Since π−1

N (x̃) is a singleton or contained in a component
of E, there is a Jordan domain U ⊂ Ω such that ∂U is contained in Ω \ E and
separates π−1

N (x̃) and ∂Ω. Arguing as in the first part of the proof, we deduce that

there is a constant c > 0 such that dN (π−1
N (x̃), z) ≥ c for all z ∈ Ω\U . This implies

that x̃ is a limit point of πN (F ∩ U). Let (x̃j) be a sequence in πN (F ∩ U) with

limit x̃. Let (yj) be a sequence in F ∩ U such that πN (yj) = x̃j . The compactness

of U implies that there is a subsequence (yjk) that converges to a point y ∈ F .
Since πN |U is Lipschitz, it follows that (xjk) converges to πN (y), and moreover
that x̃ = πN (y). We conclude that x̃ ∈ πN (F ), and hence that πN (F ) is closed. �

Corollary 3.9. The space Ω/EN is homeomorphic to Ω.

Proof. By Proposition 3.8, πN is a closed and monotone map. Thus each element of
the decomposition EN is a planar continuum. Since the components of E are non-
separating, so are the elements of EN . It follows now from the classical theorem
of Moore that Ω/EN is homeomorphic to Ω. See, for instance, Theorem 25.1 in
[Dav86]. �
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Next we study the analytic properties of πN . A consequence of Proposition 2.4
and Lemma 3.5 is that x 7→ L(Nx) is a minimal weak upper gradient of πN . The
following lemma identifies the minimal weak upper gradient of the inverse of πN .

Lemma 3.10. If U ⊂ Ω is an open set such that πN |U is injective and its inverse

h is an element of N1,2
loc (πN (U),R2), the function

g =

(
1

ω(N)
χU\E

)
◦ h

is a minimal weak upper gradient of h.

We use the convention 1
0 · 0 = 0 in Lemma 3.10.

Proof. We show that the function g as in the claim is a weak upper gradient of h.
First, the change of variables formula Lemma 3.6 implies that H2

d̃N
(πN (E)) = 0.

Therefore the paths that have positive d̃N -length on πN (E) have zero modulus.

Moreover, since h is an element ofN1,2
loc (πN (U),R2), hmaps almost every absolutely

continuous path in πN (U) to an absolutely continuous path in U . Thus it suffices
to check the upper gradient inequality for a path γ̃ : [0, 1] → πN (U) that intersects

πN (E) in a set of d̃N -length zero and along which h is absolutely continuous.
Let γ̃ : [0, 1] → πN (U) be such a path, and let x = γ̃(0) and y = γ̃(1). Let

γ = h ◦ γ̃. Note that the absolute continuity of h along γ̃ implies that γ intersects
E in a set of Euclidean length zero. Therefore, by reparametrizing, we can assume
that the set J = γ−1(Ω \ E) has full length in [0, 1].

By Lemma 2.5, the metric speed identity vγ̃ = N ◦Dγ holds L1-almost every-
where for γ. Also for almost every t ∈ [0, 1] \ γ−1(E),

(21) vγ(t) = ‖Dγ(t)‖2 ≤ 1

ω(Nγ(t))
N ◦Dγ(t) = 1

ω(Nγ(t))
vγ̃(t),

where ω(Nγ(t)) is the minimal stretching of N at γ(t). Since γ−1(E) has zero
measure, we conclude from (21) that for almost every t ∈ [0, 1],

(22) vγ(t) ≤
(

1

ω(N)
χΩ\E

)
◦ γ(t)vγ̃(t).

The right-hand side in (22) equals g ◦ (πN ◦ γ(t))vγ̃(t). Therefore, integrating both
sides of (22) implies that

‖h(x)− h(y)‖2 ≤
∫

γ̃

g dsd̃N .

The local L2-integrability of g follows from the fact that N has locally bounded
distortion (Lemma 2.1) and the change of variables formula (Lemma 3.6).

We are left to check that g is a minimal weak upper gradient. Let ρ ∈ L2
loc(πN (U))

be a weak upper gradient of h. We want to show that g(x) ≤ ρ(x) for H2
dN

-almost
every x ∈ πN (U). The set πN (E) is negligible, so it is sufficient to check this in the
complement of πN (E). As h is locally bi-Lipschitz in the complement of πN (E), it
suffices to check that

(23) g ◦ πN (x) = sup
v∈S1

1

Nx(v)
≤ ρ ◦ πN (x)

L2-almost every x ∈ U \ E.
Consider a square R ⊂ U \ E and the accompanying foliation given by

γt(s) = x0 + sv + tw,

where v, w ∈ R2 are orthogonal vectors and s, t ∈ [−1, 1].
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The metric speed characterization vπN◦γ = N ◦Dγ implies that

vγt(s) = ‖v‖2 ≤ ρ ◦ (πN ◦ γt(s))Nγt(s)(v)
holds almost everywhere along the domain of γt for almost every t. Fubini’s theorem
implies that

‖v‖2 ≤ ρ ◦ πN (x)Nx(v)

holds L2-almost everywhere on R. Equivalently,

1 ≤ ρ ◦ πN (x)Nx

(
v

‖v‖2

)

L2-almost everywhere on R. We can cover U \E by squares whose sides are parallel
to v and w, so we deduce that

(24)
1

Nx

(
v

‖v‖
2

) ≤ ρ ◦ πN (x)

L2-almost everywhere on U \ E.
Let D be a countable dense subset of S1. We have shown that, for L2-almost

every x ∈ U \E, (24) holds for every v ∈ D. Consequently, (23) holds for L2-almost
every x ∈ U \ E. �

3.5. Local quasiconformality. Let U be a subdomain of Ω such that U ⊂ Ω
is compact. Since the norm field N has locally bounded distortion, there exists
K(U) <∞ such that

L(N)2 ≤ K(U)J2(N)

for the maximal stretching L(N) and the Jacobian J2(N). Recall that L(N) is a
weak upper gradient of πN , J2(N) is the Jacobian of πN , and that the pullback
measure π∗

NH2
d̃N

is locally finite. Thus Theorem 2.6 implies the following.

Proposition 3.11. For every path family Γ in U , we have that

modΓ ≤ K(U)modπNΓ.

If (Ω/EN , d̃N ) is reciprocal, then it admits some quasiconformal parametrization
from a domain in Euclidean space. We show here that the map πN itself is a
quasiconformal parametrization, at least locally.

Proposition 3.12. The metric surface (Ω/EN , d̃N ) is reciprocal if and only if πN
is a homeomorphism that is locally quasiconformal.

Here, a map ψ : X → Y is locally quasiconformal if every point x ∈ X has a
neighborhood U such that the restriction of ψ to U is K-quasiconformal for some
K ≥ 1, where the K is allowed to depend on x.

Proof. If πN is a locally quasiconformal homeomorphism, every point in Y =

(Ω/EN , d̃N ) has a neighborhood that is reciprocal. By Corollary 1.4 of [Iko19],
this implies that Y is reciprocal.

Conversely, suppose that Y is reciprocal. It suffices to fix an arbitrary Jordan
domain Q ⊂ Ω with ∂Q ∩ E = ∅ and check that πN |intQ is quasiconformal.

The reciprocality of Y implies the existence of a homeomorphism f : πN (Q) → D

that is π
2 -quasiconformal in πN (Q). Let h = f ◦ πN |intQ. The claim follows if we

can check that h is quasiconformal.
The map h satisfies the assumptions of Theorem 2.6 and the property (i).

Therefore the quasiconformality of h follows from its injectivity; see Section 3.1
of [AIM09]. We check that h is injective.

Let y ∈ D and C = h−1(y). The set C is connected and compact. The modulus
of paths joining y to the boundary S1 is zero by the 2-Loewner property of D
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[Hei01, Example 8.24], hence (i) from Theorem 2.6 implies that the modulus of
paths joining C to ∂Q is zero. This happens only when C is a singleton by the
2-Loewner property of D. Therefore h is injective. �

Remark 3.13. Proposition 3.12 gives two simple criteria for (Ω/EN , d̃N ) to fail
to be reciprocal. First, if L2(E) > 0, then πN is not locally quasiconformal since

Lusin’s Condition (N−1) is violated. Second, if πN is not injective, then (Ω/EN , d̃N )
is not reciprocal.

4. Removable implies reciprocal

The objective of this section is to prove Theorem 1.3. An outline of the proof
is as follows. First, we give a pair of reductions, Lemma 4.1 and Lemma 4.2,
showing that it suffices to consider only the case of admissible norm fields of the
form N = ω‖ · ‖2 defined on all of R2, for some bounded function ω : R2 → [0,∞).
Next, Proposition 4.3 gives a criterion for the mapping πN in our situation to be
quasiconformal: it suffices to show that πN preserves the modulus of the path
families Γ(ξ1, ξ3;R) and Γ(ξ2, ξ4;R) for a single rectangle R containing E with
boundary edges ξ1, ξ2, ξ3, ξ4.

We complete the proof by verifying the modulus condition of Proposition 4.3.
This part is an application of the classical theorem of uniformization onto slit do-
mains. This argument is based on the proof of Theorem 9 in [AB50]. In Section 4.3,
we extend Theorem 1.3 by relaxing the assumption that L(N) ∈ L∞

loc(Ω) to the as-
sumption that L(N) ∈ Lploc(Ω) for some p ∈ (2,∞).

Lemma 4.1. An admissible norm field N on Ω is reciprocal if and only if the norm

field N̂ = ω(N) ‖·‖2 induced by the minimal stretching ω(N) is reciprocal.

Proof. As we see from Proposition 3.12, it suffices to show that the metrics gen-

erated by N and N̂ are locally quasiconformally equivalent. Observe first that it

follows directly from the definition that N̂ ≤ N . Since N has locally bounded

distortion, every point has a neighborhood U such that Nx ≤ HN̂x for some H > 0
and every x ∈ U . These facts imply that the corresponding distances are locally
bi-Lipschitz equivalent. �

For the following lemma, fix a subdomain Ω′ ⊂ Ω that contains E and is com-
pactly contained in Ω. Let K = Ω′. Since N = ω ‖·‖2 is locally bounded, there
exists α > 0 such that ω < α everywhere on K. We define

N̂ =
(
ωχK + αχR2\K

)
‖·‖2 .

The choice of α implies that N̂ is admissible on R2 vanishing exactly on E. Also,

N̂ coincides with N in Ω′.

Lemma 4.2. The norm field N = ω ‖·‖2 is reciprocal in Ω if and only if the

extension N̂ is reciprocal in R2. Moreover, in either one of these cases the quotient
maps πN̂ and πN are 1-quasiconformal homeomorphisms.

Proof. First of all, since N and N̂ are equal in Ω′, there exists a homeomorphism

f : πN (Ω′) → πN̂ (Ω′)

for which πN̂ = πN ◦ f on Ω′. In fact, the map f is a local isometry and hence
1-quasiconformal.

Since the restrictions of πN and πN̂ to the complement of E are locally bi-
Lipschitz, we deduce that they are locally quasiconformal if and only if their re-
strictions to Ω′ are locally quasiconformal. These two conditions are equivalent for
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the maps since f is quasiconformal. We conclude from Proposition 3.12 that N is

reciprocal if and only if N̂ is reciprocal.
We are left to check that if πN is locally quasiconformal, then it is actually 1-

quasiconformal. Combining Theorem 2.6 with the local quasiconformality of πN ,
we conclude that h = π−1

N has the Sobolev regularity required for Lemma 3.10.
Therefore

ρ =

(
1

ω
χΩ\E

)
◦ h

is a minimal weak upper gradient of h. The change of variables formula Lemma 3.6
and Theorem 2.6 imply that the outer dilatation of h is bounded from above by
one. The outer dilatation bound for πN follows from Proposition 3.11. We conclude
that πN is 1-quasiconformal. The 1-quasiconformality of πN̂ is argued in a similar
manner. �

4.1. A criterion for quasiconformality. We prove Proposition 4.3 in this sec-
tion. We consider an admissible norm field N = ω ‖·‖2 defined on a domain Ω ⊂ R2

vanishing exactly on a non-separating compact set E ⊂ Ω.
We consider a quadrilateral Q ⊂ Ω whose boundary ∂Q does not intersect the

set E. Let (ξ1, ξ2, ξ3, ξ4) be a decomposition of ∂Q into four arcs labelled in coun-
terclockwise order.

Since ∂Q does not intersect E, the restriction of πN to ∂Q is a homeomorphism
(Proposition 3.8). As a consequence of Corollary 3.9, the image πNQ is a Jordan
domain with boundary πN∂Q and the arcs (πNξ1, πNξ2, πNξ3, πNξ4) decompose
πN (∂Q).

We fix some notation for the following proof. Let

Γ1 = Γ (ξ1, ξ3;Q) and Γ̃1 = Γ (πNξ1, πNξ3;πNQ) ;

Γ2 = Γ (ξ2, ξ4;Q) and Γ̃2 = Γ (πNξ1, πNξ3;πNQ) .

We defined Γ(F1, F2;G) in Section 2.5. Notice that πNΓ1 ⊂ Γ̃1 and πNΓ2 ⊂ Γ̃2.

Proposition 4.3. Let N = ω ‖·‖2 be admissible. If modΓ1 = mod Γ̃1 and

modΓ2 = mod Γ̃2, then the restriction of πN to Q is a homeomorphism and 1-
quasiconformal.

Proof. Proposition 3.11 and the special form of N imply that the outer dilatation
of πN is one so we only need to check that πN |Q is injective and that its inverse
has its outer dilatation bounded from above by one.

It was proved in [RR19] that there exists a continuous function

ũ1 : πNQ→ [0, 1]

in the Sobolev space N1,2(πNQ) whose minimal weak upper gradient ρ̃1 is a mini-

mizer for mod Γ̃1. The function ũ1 satisfies the boundary conditions ũ1(πN ξ1) = 0
and ũ1(πN ξ3) = 1.

Consider u1 = ũ1 ◦ πN . Since N = ω ‖·‖2 and πN has bounded outer dilatation,
it is readily verified that ρ1 = (ρ̃1 ◦ πN )ω ∈ L2(Q) is a weak upper gradient of u1
with L2-norm mod Γ̃1 = modΓ1. Therefore u1 ∈ N1,2(Q).

A consequence of Weyl’s lemma [AIM09, A.6.10] and continuity of u1 is that u1
is harmonic in the interior of Q; it minimizes the Dirichlet energy among continuous
Sobolev maps u : Q→ [0, 1] with boundary values u(ξ1) = 0 and u(ξ3) = 1.

We repeat the above construction for the path families Γ2 and Γ̃2. Let u2 and
ũ2 denote the corresponding functions, where u2(ξ2) = 0 and u2(ξ4) = 1.

Let M denote the modulus of Γ1. A consequence of Riemann mapping theorem
is that Mu2 is a harmonic conjugate of u1 and the restriction of f = (u1,Mu2)
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to the interior of Q is conformal. The map extends as a homeomorphism to the
boundary ∂Q.

Let f̃ = (ũ1,Mũ2). Then f = f̃ ◦ πN by construction. This identity and
bijectivity of f imply that the restriction of πN to Q is a homeomorphism.

Since the restriction of πN to Q is a homeomorphism and ∂Q does not intersect
E, we find a Jordan neighborhood U ⊃ Q for which πN |U is a homeomorphism and
that U ∩ E = Q ∩E (Proposition 3.8). Let h denote the inverse of πN |U .

We claim that h ∈ N1,2
loc (πN (U), U). Since πN is locally bi-Lipschitz in the

complement of E and E ∩ U ⊂ int(Q), it suffices to verify that h|V is an ele-

ment of N1,2
loc (V, U), where V = πN (int(Q)). This regularity follows readily since

the restriction of f to the interior of Q is locally bi-Lipschitz, f̃ is an element of

N1,2 (πNQ, [0, 1]× [0,M ]), and h = f−1 ◦ f̃ in V . Now the outer dilatation bound
KO(h) ≤ 1 follows from Lemma 3.10 and the change of variables formula of πN . �

Remark 4.4. Proposition 4.3 is related to a question posed by Rajala in [Raj17].
Rajala asks whether the reciprocal upper bound (12) implies that points have zero
modulus in the sense of (13). This is the case whenever N = ω ‖·‖2 is admissible
and satisfies the sharp modulus upper bound of one in (12). The proof relies on the
existence and Sobolev regularity of energy minimizers of quadrilaterals on metric
spaces studied on [Raj17, RR19]. The key observation is that if πN preserves
the modulus of opposite sides of ∂Q, then the quotient map πN pulls back these
minimizers to harmonic minimizers on the Euclidean space.

4.2. Proof of Theorem 1.3. Let E ⊂ R2 be removable for conformal mappings.
We want to prove that for any domain Ω ⊃ E and admissible norm field N : Ω ×
R2 → [0,∞) vanishing exactly on E, the quotient space (Ω/EN , d̃N ) is reciprocal.

As shown in Lemma 4.1 and Lemma 4.2, we only need to consider the case where
Ω = R2 and N = ω ‖·‖2.

Let R = [a, b] × [c, d] be a rectangle whose interior contains E. Let ξ1 = {a} ×
[c, d], ξ2 = [a, b]× {c}, ξ3 = {b} × [c, d], and ξ4 = [a, b]× {d}. Let Γ1 = Γ(ξ1, ξ3;R)
and Γ2 = Γ(ξ2, ξ4;R).

Let Γ̃1 denote the family of paths joining πN ξ1 to πNξ3 in πNR and Γ̃2 the

family of paths joining πN ξ2 to πN ξ4 in πNR. We claim that mod Γ̃1 = modΓ1

and mod Γ̃2 = modΓ2. Proposition 4.3 then implies that πN is 1-quasiconformal
in the interior of R. Since R is an arbitrary rectangle containing E, it then follows
that πN is globally 1-quasiconformal.

Observe that the inequalities mod Γ̃1 ≥ modΓ1 and mod Γ̃2 ≥ modΓ2 hold in
general by Proposition 3.11. Thus we only need to verify the opposite inequalities.

A standard fact is that there is a sequence of finitely connected domains Ωk ⊂
R

2 \ E such that Ωk ⊂ Ωk+1 for all k ∈ N, each component of ∂Ωk is a closed
analytic Jordan path, and

⋃∞
k=1 Ωk = R2 \E. We assume without loss of generality

that ∂R ⊂ Ω1.
For each n ∈ N, there exists a conformal embedding ϕn : Ωn → R2 normalized

as

ϕn(z) = z +
a1,n
z

+ · · ·

near ∞ such that the real part of a1,n is the smallest among all conformal embed-
dings ψ : Ωn → R2 of the form

(25) ψ(z) = z +
a

z
+ · · · .

See for example Section V.2 of [Gol69].
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For each n ∈ N, the minimizer ϕn is unique and its image is a domain Un ⊂ R2

whose complement consists of finitely many arc segments parallel to the vertical
axis.

Fix n and consider k ≥ n. By the minimality of the real part of a1,n, we have
that 0 ≥ Re(a1,k) ≥ Re(a1,n). Hence the mappings ϕk|Ωn

: Ωn → R2 form a
normal family. See for example the proof of Theorem 1 of [Gol69, Section V.2] for
details. A diagonal argument then implies that (ϕn) is a normal family. Thus every
subsequence of (ϕn) has a further subsequence converging uniformly on compact
sets to a conformal map f : R2 \ E → R2 satisfying the normalization (25) around
∞. By the removability of E, the map extends to a Möbius transformation, and
thus (25) implies that f(z) = z for all z ∈ R2. Hence the sequence (ϕk) itself must
converge to the identity map uniformly on compact sets of R2 \ E.

Let Qn denote the quadrilateral bounded by the Jordan curve ϕn(∂R). The
quadrilateral Qn converges to R with respect to Hausdorff distance as n→ ∞. Let
π1 and π2 denote projection onto the x-axis and y-axis, respectively, and let an =
supπ1(ϕn(ξ1)), bn = inf π1(ϕn(ξ3)), cn = inf π2(ϕn(ξ2)) and dn = supπ2(ϕn(ξ4)).

Let Rn = [an, bn]× [cn, dn] and Ên = R2 \ ϕn(Ωn). Observe that Ên consists of
finitely many vertical slits S1, . . . , Sm.

There exists n0 such that for all n ≥ n0, the slits Ên are contained in the interior
of Rn, and that 0 < bn − an and 0 < dn − cn. Fix such an n. We claim that

(26) mod Γ̃1 ≤ dn − cn
bn − an

.

Consider the function ρn : R
2/EN → [0,∞] defined as zero in the complement of

πN (Ωn), and otherwise by

ρn =

(
χRn\Ên

bn − an
◦ ϕn

J
−1/2
ϕn

ω

)
◦ (πN |Ωn

)−1.

We claim that ρn is admissible for Γ̃1. Let γ ∈ Γ̃1 be locally rectifiable with respect

to d̃N .

We consider the restriction of γ to the set I = γ−1
(
πNϕ

−1
n (Rn \ Ên)

)
. We have

∫

γ

ρn dsd̃N ≥
∫

I

ρn ◦ γvγ dL1.

Here θ = ϕn ◦ (πN |Ωn+1
)−1 ◦ γ|I is well-defined and

∫

I

ρn ◦ γvγ dL1 =

∫

I

χRn\Ên

bn − an
◦ θvθ dL1.

Since Ên consists of finitely many vertical slits, we conclude using the area formula
for paths and the projection onto the x-axis that

∫

I

χRn\Ên

bn − an
◦ θvθ dL1 ≥ 1

bn − an
L1 (|π1 ◦ θ|) ≥ 1.

Therefore ∫

γ

ρn dsd̃N ≥ 1,

and we conclude that ρn is admissible. The change of variables formulas for πN
and ϕn yield that

∫
ρ2n dH2

d̃N
=
dn − cn
bn − an

.
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This verifies (26). Finally, observe that dn − cn → d − c and bn − an → b − a as
n→ ∞. This shows that

mod Γ̃1 ≤ d− c

b− a
= modΓ1.

A similar argument, using conformal mappings onto horizontal slit domains, shows

that mod Γ̃2 ≤ modΓ2. This completes the proof.

4.3. An extension of Theorem 1.3 to integrable norm fields. In this section
we extend Theorem 1.3 to the case of lower semicontinuous norm fields N with
locally bounded distortion such that L(N) ∈ Lploc(Ω) for some p ∈ (2,∞). We
assume that N vanishes exactly on a compact set E ⊂ Ω that is removable for
conformal mappings.

For this section, we allow the possibility for Nx to be infinite at some points
x ∈ Ω. To say this more precisely, in the definition of seminorm in Section 2.3,
we consider a seminorm to be a function S : R2 → [0,∞] satisfying the same as-
sumptions listed there, following the convention that 0 · ∞ = 0. An admissible
norm field is now a function N : Ω× R

2 → [0,∞] satisfying the conditions of Defi-
nition 3.1, except that local boundedness of N is now replaced by the assumption
that L(N) ∈ Lploc(Ω). Observe that the local boundedness of the distortion then
implies that if Nx(v) = ∞ for some v ∈ R2 \ {0}, then Nx must have the form

Nx(v) =

{
∞ if v 6= 0

0 if v = 0
.

In particular, ω(Nx) = L(Nx) = ∞. Note also that the minimal stretching ω(N) is
lower semicontinuous, and that Lemma 3.3 remains true for x ∈ Ω with ω(Nx) <∞.

We define the pseudodistance dN exactly as in Definition 3.2. It is no longer
immediately clear that dN (x, y) <∞ for any given pair of points x, y ∈ Ω, but this
can be shown from the local Lp-integrability of L(Nx), since p > 2. See [LW18,
Thm. 1.1] and [CS19, Prop. 5.12] for proofs of the analogous fact in related settings.

As before, we identify x, y ∈ Ω if dN (x, y) = 0 and letX denote the corresponding
quotient space. Let π : Ω → X denote the associated quotient map. The quotient
distance dX on X is defined as follows: for every x, y ∈ X , we set dX(x, y) =
dN (π−1(x), π−1(y)), observing that this is independent of the choice of element in
π−1(x) and π−1(y) and hence well-defined.

Next, we establish that π is continuous and an element of N1,p
loc (Ω, X). To this

end, for every x ∈ Ω, fx(z) = dN (x, z) is measurable as a consequence of [HKST15,
Theorem 9.3.1]. Since L(N) is an upper gradient of π, it is also an upper gradient of
fx. Then Morrey’s embedding theorem [HKST15, Theorem 9.2.14] implies that fx
is locally Hölder continuous with Hölder exponent and Hölder constant independent
of x. This implies that π is locally Hölder continuous. Thus π is continuous with
upper gradient L(N) ∈ Lploc(Ω). We are now ready for the main result of this
section. We recall that N is assumed to vanish on a compact set E removable for
conformal mappings.

Proposition 4.5. The metric space X has locally finite Hausdorff 2-measure, and
the quotient map π is a locally quasiconformal homeomorphism. In particular, X
is a quasiconformal surface.

Proof. We first prove that π is a homeomorphism. To this end, let ω(z) = ω(Nz)

and N̂z = ω(z) ‖·‖2 for every z ∈ Ω. For each k ∈ N, we define the function
ωk : Ω → [0,∞) by

ωk(z) = min {ω(z), k} .
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Each function ωk is bounded and lower semicontinuous in Ω, and ωk(z) = 0 if and
only if ω(z) = 0. For every z ∈ Ω, the sequence (ωk(z))

∞
k=1 is non-decreasing and

converges to ω(z).
Let Nk = ωk ‖·‖2 and dk = dNk

. Since Nk is bounded and lower semicon-
tinuous, Theorem 1.3 implies that πk : Ω → (Ω, dk) defined by πk(z) = z is a
1-quasiconformal homeomorphism. Since Nk ≤ ω(N) ‖·‖2 ≤ N everywhere, we see
that

dk(πk(x), πk(y)) ≤ dX(π(x), π(y))

for all x, y ∈ Ω. Since πk is a homeomorphism, we see that π is injective. Now the
map ψk : X → (Ω, dk) defined by ψk = πk ◦π−1 is 1-Lipschitz, hence π−1 = π−1

k ◦ψk
is continuous. Therefore π is a homeomorphism.

Recall that N has locally bounded distortion. From this and the fact that, for
every x ∈ X , π−1(BX(x, r)) is compact for sufficiently small r > 0, we see that the
induced distances dN and dN̂ are locally bi-Lipschitz equivalent. We assume from

this point onwards, without loss of generality, that N = N̂ = ω ‖·‖2.
Let Γ0 denote the family of paths along which ω = L(N) fails to be inte-

grable. Since ω ∈ Lploc(Ω) ⊂ L2
loc(Ω), the family Γ0 has zero modulus. Recall

from Lemma 3.7 that, for any absolutely continuous path θ in Ω,

ℓdX (π ◦ θ) ≥ lim
k→∞

ℓdk(ψk ◦ θ) = lim
k→∞

ℓNk
(θ) = ℓN(θ),

where the latter equality follows from monotone convergence. If θ 6∈ Γ0, we have
ℓN(θ) < ∞ and the definition of dX implies ℓdX (π ◦ θ) ≤ ℓN (θ). So ℓdX (π ◦ θ) =
ℓN(θ). Since the equality holds for all absolutely continuous paths outside the
negligible family Γ0, we conclude from Sections 3.3 and 3.4 of [LW18] that L(N) = ω

is a minimal weak upper gradient of π ∈ N1,2
loc (Ω, X) and the Jacobian of π equals

J2(N) = ω2 L2-almost everywhere. Since we also have that π ∈ N1,p
loc (Ω, X) for

p > 2, it satisfies Lusin’s Condition (N) [Vod00, Theorem 7.1]. Therefore, for each
compact set K ⊂ Ω,

H2
X(π(K)) =

∫

K

ω2 dL2 <∞.

We conclude that X has locally finite Hausdorff 2-measure. An application of
Theorem 2.6 yields that KO(π) = 1.

The proof is complete after we verify KO(π
−1) = 1. Since πk is 1-quasiconformal

for every k, it suffices to verify KO(ψk) = 1 for some k. To this end, we fix k ∈ N

and recall that ψk is 1-Lipschitz.
Since πk is a quasiconformal homeomorphism, it satisfies Lusin’s Condition

(N−1). This implies that the map π−1 satisfies Lusin’s Condition (N). As a
consequence, the Jacobian of ψk coincides with ρ2k for ρk = ((ωk/ω)χΩ\E) ◦ π−1.

Since ψk is Lipschitz, we have ψk ∈ N1,2
loc (X, (Ω, dk)). We claim that any minimal

weak upper gradient of ψk coincides with ρk almost everywhere in X . If we verify
this, then KO(ψk) = 1 follows from Theorem 2.6.

Consider an absolutely continuous path γ : [0, 1] → X with |γ| ⊂ X \ π(E).
Then ψk ◦ γ is absolutely continuous, and since dk and ‖·‖2 are locally bi-Lipschitz

equivalent in a neighborhood of the image of θ = π−1
k ◦ψk◦γ, the path θ is absolutely

continuous with respect to ‖·‖2. Then by monotone convergence and Lemma 3.7,

ℓN (θ) = lim
n→∞

ℓNn
(θ) = lim

n→∞
ℓdn(ψn ◦ γ).

Since every ψn is 1-Lipschitz,

lim
n→∞

ℓdn(ψn ◦ γ) ≤ ℓdX (γ).

Therefore ℓN (θ) ≤ ℓdX (γ) <∞, and, by the construction of dX , ℓdX (γ) ≤ ℓN (θ).
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Since ℓN(θ) = ℓdX (γ) holds for every subpath of γ, we see that vγ = N ◦Dθ =
ω ◦ θvθ and vψk◦γ = ωk ◦ θvθ almost everywhere in the domain of γ. We conclude
from this that

(27) vψk◦γ = ρk ◦ γvγ
almost everywhere with respect to the length measure of γ. If Γ̃0 denotes the family
of absolutely continuous paths in X that have positive length on the set π(E), then

H2
X(π(E)) = 0 implies mod Γ̃0 = 0. The equality (27) remains valid for every

absolutely continuous path γ 6∈ Γ̃0, which implies that ρk is a weak upper gradient
of ψk. The minimality of ρk is immediate from (27). So any minimal weak upper
gradient of ψk coincides with ρk H2

X -almost everywhere. �

Remark 4.6. The norm field N = ω ‖·‖2 defined by the weight ω(x) = ‖x‖−1
2 (1−

log ‖x‖2)−1 ∈ L2(D) induces a complete hyperbolic metric on the punctured unit
disk. In particular, the origin is at infinite distance from any other point. Conse-
quently, the assumption p > 2 in Proposition 4.5 cannot be relaxed.

5. Reciprocal implies removable

This section is dedicated to a proof of Theorem 1.4. Recall that we consider
a compact set E ⊂ Ω for which Ω \ E is connected, together with the norm field
N defined by Nx = min

{
1, d‖·‖

2
(E, x)p

}
‖·‖2 for some p > max {dimHE − 1, 0}.

The norm field N induces a decomposition EN of Ω, a metric d̃N on Ω/EN , and a

quotient map π : Ω → (Ω/EN , d̃N ), as described in Section 3.

5.1. Decay of the norm field near E. The following lemma states that if N
decays to zero sufficently fast near E, then each component of E collapses to a
point under the quotient map πN .

Lemma 5.1. Let Nx = min{1, d‖·‖2
(x,E)p} ‖·‖2. For all p > max {dimHE − 1, 0},

H1
d̃N

(πN (E)) = 0. Consequently, the preimage of every x ∈ πN (E) is a connected

component of E.

Proof. Let p > dimHE−1 and let ε > 0. By the definition of Hausdorff dimension,
there exists δ > 0 and a countable collection of sets A = {Aj} such that E ⊂ ⋃j Aj ,
diam‖·‖2

Aj ≤ δ for all j, and
∑

j

(diam‖·‖2
Aj)

p+1 < ε.

Without loss of generality, we may assume that Aj ∩ E 6= ∅ for all j. Let dj =

diam‖·‖2
Aj . Thus Aj ⊂ B‖·‖2

(y, dj) for some y ∈ E. By integrating N over the
straight-line path from y to a point z ∈ Aj , it follows that

dN (y, z) ≤
∫ dj

0

tp dt =
dp+1
j

p+ 1
.

Thus diamdN Aj ≤ 2(p+ 1)−1dp+1
j < 2(p+ 1)−1δp+1, and we get

∑
j diamdN Aj <

2(p+ 1)−1ε. This is sufficient to show that H1
d̃N

(πN (E)) = 0.

Next, let x ∈ πN (E). Proposition 3.8 implies that π−1
N (x) is a subset of a

connected component F of E. Since πN (F ) is connected and compact subset of
πN (E), we have that

diamπN (F ) ≤ H1
d̃N

(πN (F )) ≤ H1
d̃N

(πN (E)) = 0.

Hence πN (F ) = x and we must have F = π−1
N (x). �
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5.2. Proof of Theorem 1.4. We first observe that if (Ω/EN , d̃N ) is reciprocal,
then the space formed by taking the same set E and the same definition for N , but
applied to all points x ∈ R2, is also reciprocal. Thus the choice of domain Ω is not
relevant for the proof, and we assume for the remainder of the section that Ω = R

2.
We prove the contrapositive: if E is not removable for conformal mappings, then

(R2/EN , d̃N ) is not reciprocal.
Let E ⊂ R2 be a set that is not removable for conformal mappings. As a

consequence of Proposition 2.8, there is a compact set Ê ⊂ R
2 of positive measure

and a conformal map f : R2 \ Ê → R2 \ E. Let N̂ = χ
R2\Ê ‖·‖2 and let π̂ : R2 →

(R2/EN̂ , d̃N̂ ) be the associated quotient map. Observe that N̂ is an admissible norm

field vanishing on the set Ê.
The following lemma states that f extends to a mapping of the respective quo-

tient spaces. For brevity, let Ŷ = R2/EN̂ and Y = R2/EN .

Lemma 5.2. The map f : R2 \ Ê → R2 \ E induces a continuous monotone map

f̂ : Ŷ → Y . That is, there is a monotone map f̂ : Ŷ → Y satisfying f̂ ◦ π̂(x) =

πN ◦ f(x) for all x ∈ R2 \ Ê.

Proof. Let y ∈ Ŷ , and let F̂ denote its preimage under π̂. If F̂ = {x} for some

point x /∈ Ê, then we set f̂(y) = πN ◦ f(x).
Otherwise, F̂ is a subset of some component Â of Ê. For all m ∈ N, let γ̂m

be a Jordan path with image contained in B‖·‖2
(Â, 1/m) \ Ê that separates Â and

infinity. The curve |γ̂m| is the boundary of a closed region Âm containing Â. We

assume without loss of generality that |γ̂m+1| ⊂ Âm for all m.
By assumption, γm = f ◦ γ̂m is a Jordan loop whose image bounds a compactly

contained domain Am. Let A =
⋂
mAm. It is immediate that A is nonempty and

compact. The intersection is also connected; see for example Section 28 of [Wil70].
This implies that A is a connected component of E. Therefore πN (A) is a point by

Lemma 5.1. We define f̂(y) = πN (A).

We now check that f̂ is continuous. Let y ∈ Ŷ and let (yn) be a sequence in

Ŷ converging to y. Let F̂n = π̂−1(yn). In the case that F̂ = {x} for some x /∈ Ê,
the continuity is obvious. Otherwise, we proceed as follows. For each fixed m ∈ N,

Fn ⊂ Âm for sufficiently large n. This implies that f̂(yn) ⊂ πN (Am). Therefore

the accumulation points of f̂(yn) are in the intersection of πN (Am). Since the

intersection equals πN (A), the sequence f̂(yn) converges to πN (A) = f̂(y). The
continuity follows.

By construction, the preimage of a point in R2/E under π̂ ◦ f̂ is either a single-

point set or a component of Ê. We conclude that f̂ is monotone. �

Let R = [a, b] × [c, d] ⊂ R2 be a rectangle whose interior contains Ê. Let Γ1

denote the family of paths γt : [a, b] → R2, where t ∈ [c, d], defined by γt(s) = (s, t).
Thus Γ1 is a foliation of R by horizontal paths. Let Γ2 denote the corresponding
foliation of R by vertical paths.

Next, let Q be the Jordan domain bounded by f(∂R), and let ξ1, ξ2, ξ3, ξ4 denote,

respectively, the image of the left, bottom, right, and top side of R. Let Γ̃1 denote

the family paths joining πNξ1 to πNξ3 in πNQ and Γ̃2 the family of paths joining
πNξ2 to πNξ4.

By Lemma 4.2, it suffices to show that Y is not 1-reciprocal. Thus the proof is
complete after we verify the inequalities

(28) 1 < mod π̂Γ1 mod π̂Γ2
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and

(29) mod π̂Γ1 mod π̂Γ2 ≤ mod Γ̃1 mod Γ̃2.

Define the function P : R2 → [0,∞] by

P (x) =

{
L(Nf(x)) ‖Dxf‖ if x 6∈ Ê

0 if x ∈ Ê
.

Since N is a weighted Euclidean norm and f is conformal in the complement of Ê,

it follows that N ◦Dxf(v) = P (x) ‖v‖2 for all v ∈ R2 and all x ∈ R2 \ Ê.

We consider the function P̂ : R2/Ê → [0,∞] defined by taking P̂ (x) = P (π̂−1(x)).

Observe that P̂ is well-defined since π̂ is injective outside of Ê. Loosely speaking,

P̂ is a weak upper gradient of f̂ .

Let ρ : f̂(R̂) → [0,∞] be an admissible function for Γ̃1, and let ρ̂ = (ρ ◦ f̂)P̂ . We
first observe that

(30)

∫

R̂

ρ̂2 dH2
d̂
=

∫

f̂(R̂)

ρ2 dH2
d̃N
.

Indeed, the integrals are left unchanged by the removal of πN (E) and π̂(Ê) from
both sides. With this reduction, the identity (30) follows from the Jacobian iden-

tities Jf ≡ ‖Df‖2, Jπ̂ = χR2\E , and JπN
= L2(N).

Next, we claim that ρ̂ is weakly admissible for π̂Γ1. Let γ̂t denote the image

under π̂ of the horizontal path γt in the quotient space R2/Ê . Lemma 3.7 implies
that

(31) vf̂◦γ̂t(s) = N ◦Df ◦Dγt(s) = P̂ ◦ γ̂t(s)vγ̂t(s)

for L1-almost every s ∈ [a, b] \ γ−1
t (Ê) and that the total variation of γ̂t in π̂Ê is

zero. Similarly, since H1
d̃N

(πN (E)) = 0 by Lemma 5.1, the area formula [Fed69,

Theorem 2.10.13] for paths implies that the total variation of f̂ ◦ γ̂t in πN (E) is

zero. We conclude that f̂ ◦ γ̂t is absolutely continuous as long as the right-hand
side of (31) is integrable.

Observe that (30) holds with the characteristic function χf̂ R̂ in place of ρ and

P̂ in place of ρ̂. Then an application of Fubini’s theorem implies that the function
in the right-hand side of (31) is integrable for L1-almost every t. For such t, we
conclude from (31) that

1 ≤
∫

f̂◦γ̂t

ρ ds =

∫

γ̂t

ρ̂ ds.

Therefore ρ̂ is weakly admissible for π̂Γ1, and the equality (30) implies that

mod π̂Γ1 ≤ mod Γ̃1.

A similar argument applied to the path family π̂Γ2 gives mod π̂Γ2 ≤ mod Γ̃2. The
inequality (29) now follows.

To conclude the proof, we prove (28). Let ρ be admissible for π̂Γ1. Then for

all t ∈ [c, d], we have 1 ≤
∫ d
c ρ ◦ π̂χ

R2\Ê(s, t) dt. Applying Fubini’s theorem and

Hölder’s inequality gives

d− c ≤
∫

R

ρ ◦ π̂χ
R2\Ê dL2 ≤

(∫

R

ρ ◦ π̂2χ
R2\Ê dL2

)1/2

L2(R \ Ê)1/2.

After rearranging and taking the infimum over admissible ρ, we find that

(d− c)2/L2(R \ Ê) ≤ mod π̂Γ1.
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The analogous argument gives (b− a)2/L2(R \ Ê) ≤ mod π̂Γ2. Thus

1 <
(b− a)2(d− c)2

L2(R \ Ê)2
≤ mod π̂Γ1 mod π̂Γ2.

6. Linear Cantor sets: two examples

We call a Cantor set E ⊂ R×{0} a linear Cantor set. As remarked in Section 1.3,
a norm field vanishing on a linear Cantor set E of positive length may or may
not be reciprocal. For completeness, we include here two explicit examples to
illustrate both of these cases. Recall from the discussion following the statement of
Theorem 1.4 that a compact setE ⊂ [0, 1]×{0} is removable for conformal mappings
if there exists an admissible norm field N vanishing on E that is reciprocal. Such an
E is necessarily a linear Cantor set by Proposition 3.12. Conversely, if there exists
an admissible norm field vanishing on a linear Cantor set E that is not reciprocal,
then E is not removable for conformal mappings. Versions of these examples are
already present in [AB50, Section 7]. A closely related construction, and the one
that we directly based Example 6.1 on, is found in Section 11 of an early version of
the paper [Sch95].

Example 6.1. We construct a lower semicontinuous weight ω : R2 → [0,∞] that
vanishes on a Cantor set E ⊂ [0, 1] × {0} of positive length such that the space
(R2, dω) is not reciprocal. The idea is to make E sufficiently large so that the
modulus of the path family joining (0, 0) to (0, 1) in (R2, dω) is positive.

Identify [0, 1] with the set [0, 1] × {0} ⊂ R2. Let a1 = 1/2, and now define
inductively sequences (aj), (bj) by the rules bj = aj/ exp(4

j) and aj+1 = (aj−bj)/2.
Let I1 be a closed interval centered at t1 = 1/2 of length 2b1. Define next intervals
Ij inductively as follows. Assume that we have a collection of disjoint intervals

I1, . . . , Ij−1. From the complement of (0, 1) \ ⋃j−1
k=1 Ik, choose an open interval J

of largest length. Let tj be the midpoint of J , and let Ij be the closed interval
centered at tj of length 2bj. We record the observation that d‖·‖2

(tj , {0, 1}) =
min{tj , 1− tj} ≥ aj . Let E = [0, 1] \⋃j Ij , and let ω = χR2\E .

Consider now an interval Ij . Assume in the first case that tj ≤ 1/2. For all
t ∈ (0, tj − bj), let γj,t be the path that connects t to 2tj − t along the upper
semicircle of the circle centered at tj with radius tj − t. Let Γj be the family of all
such paths γj,t. Observe that Γj is a full-modulus subfamily of the family of paths

in the upper half-plane H that separate the sets B((tj , 0), bj) and H \B((tj , 0), tj).
Since the metric speed of γ ∈ Γj with respect to Euclidean distance and with

respect to dω coincide almost everywhere along γ, the modulus of Γj with respect
to the metric dω equals the Euclidean modulus: moddω Γj = log(tj/bj)/π. See
for example [Hei01, Lemma 7.18]. Next, we consider the case that tj > 1/2. For
all t ∈ (tj + bj, 1), let γj,t be the path connecting t to 2tj − t along the upper
semicircle of the circle centered at tj with radius t − tj . In this case, we have
moddω Γj = log((1− tj)/bj)/π.

We claim that the metric dω violates reciprocality condition (13). Let F1 =
{(0, 0)} and F2 = {(1, 0)} and let Γ = Γ(F1, F2;R

2). Recall the notation Γ(F1, F2;G)
defined in Section 2.5.

Observe that Γ is a subfamily of Γ(F1,R
2 \ D;R2), which is majorized by the

annular path families Γ(B‖·‖
2
(0, ε),R2 \ D;R2) for all ε > 0. In particular,

moddω Γ(B‖·‖
2
(0, ε),R2 \ D;R2) ≥ moddω Γ

for all ε > 0. Thus it is sufficient to show that moddω Γ > 0.
Let ρ be an admissible function for Γ for the metric dω. For each j ∈ N, let

mj = inf{
∫
γ
ρ dsω : γ ∈ Γj}. If mj > 0, this implies that ρ/mj is admissible for the
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path family Γj , and thus that

(32)

∫

Aj

ρ2

m2
j

dH2
ω ≥ modΓj =

log(min{tj , 1− tj}/bj)
π

≥ log(aj/bj)

π
.

Let γj be a path in Γj such that
∫
γj
ρ dsω ≤ max{2mj, 2

−j−1}. We can define a

path γ : [0, 1] → R2 by

γ(t) = (t, sup
j∈N

π2(|γj | ∩ ({t} × R))).

Here, π2 denotes projection onto the vertical axis. We see that the path γ is dω-
rectifiable as follows. For every t ∈ [0, 1] except on a countable set, there is ε > 0
such that γ((t − ε, t + ε)) is a subpath of a single path γj . At such points t, γ is
locally rectifiable. Otherwise, there is ε > 0 such that the image of γ((t−ε, t+ε)) is
contained in the union of the image of two paths γj , γk. Again, it follows that γ is
locally rectifiable at these points. We conclude that γ itself is rectifiable. Observe
that

1 ≤
∫

γ

ρ ds ≤
∞∑

j=1

∫

γj

ρ ds ≤
∞∑

j=1

max{2mj, 2
−j−1}.

This implies that the relationship mj ≥ 1/(2 · 2j) must hold for some j ∈ N. This
together with (32) gives

1

2 · 2j ≤ mj ≤
(

π

log(aj/bj)

)1/2(∫

R2

ρ2 dH2
‖·‖

2

)1/2

=
( π
4j

)1/2(∫

R2

ρ2 dH2
‖·‖

2

)1/2

.

This yields the lower bound

1

4π
≤
∫

Rn

ρ2 dH2.

We conclude that (R2, dω) is not reciprocal.

Example 6.2. We construct a lower semicontinuous weight ω : R2 → [0,∞] that
vanishes on a Cantor set E ⊂ [0, 1] × {0} of positive length such that the space
(R2, dω) is reciprocal.

As before, identify [0, 1] with the set [0, 1]×{0} ⊂ R2. Consider the quadrilateral
Q = [0, 1]× [−1, 1]. Let Γ be the family of paths in Q connecting the left and right
edges of Q.

Fix for the time being a value t ∈ (0, 1/2). Let I = [t, 1 − t] ⊂ (0, 1) and let
ω1 = χR2\I , noting that ω1 vanishes on the set I. Let E1 denote the decomposition

of R2 corresponding to I. The weight ω1 determines a metric d̃ω1
on R2/E1 that is

not reciprocal. Let πω1
denote the associated quotient map. Note that the metric

d̃ω1
, like all other metrics in this example, agrees with the Euclidean metric locally

outside of πω1
(I). Thus the Hausdorff 2-measure relative to the metric d̃ω1

coincides
with Lebesgue measure.

Let ρ̃ be an admissible function for πω1
Γ with respect to the metric d̃ω1

satisfying∫
ρ̃2 dH2

dω̃
≤ 2modπω1

Γ. Since the function

g̃ =
χ[0,t)×[−1,1] + χ(1−t,1]×[−1,1]

2t

is admissible for πω1
Γ, it follows that

(33)

∫
ρ̃2 dH2

d̃ω1

≤ 2

∫
g̃2 dH2

d̃ω1

=
2

t
.
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Let ρ = χQ + ρ̃ ◦ πω1
.

For all n ∈ N, i ∈ {1, . . . , n}, let ϕni denote the similarity mapping of R2 taking
I to the interval [(i− 1 + t)/n, (i− t)/n]. Explicitly, ϕni (x) = x/n+ ((i − 1)/n, 0).
Let In =

⋃n
i=1 ϕ

n
i (I) and let En denote the corresponding decomposition of R2. Let

ωn = χR2\In , and d̃ωn
the resulting metric on R2/En.

Let ρni = ρ ◦ (ϕni )−1. Define now the function ρn : Q→ [0,∞] by

ρn(x) =

{
ρni (x) if x ∈ ϕni ((0, 1)× [−1, 1]) for some i ∈ {1, . . . , n}
1 otherwise

.

For all x ∈ πωn
(Q), we define ρ̃n(x) = ρn(π

−1
ωn

(x)). We claim that ρ̃n is admissible

for πωn
Γ with respect to the metric d̃ωn

.
Let Qni = [(i − 1)/n, i/n]× [−1, 1], and let γni be a subpath of γ that traverses

Qni horizontally. It suffices to show that
∫
γn
i

ρnωn ds‖·‖
2
≥ 1/n. If γni does not

intersect In, then this is clear since ρni ≥ 1 on Qni \ In. If γni is contained in ϕni (Q),
then this is also immediate by the admissibility of ρ̃. Finally, if γni intersects both
In and Qni \ϕni (Q), then γni must traverse a vertical distance of 1/n, and again the
conclusion follows. We conclude that ρn is admissible for Γ.

Next, we have the upper bound

∫

Q

ρ2n dL2 ≤
∫

Q

1 dL2 +
n∑

i=1

∫

Qn
i

(ρni )
2 dL2 ≤ 2 +

‖ρ‖2L2(Q)

n
.(34)

Observe that 2 = mod‖·‖2
Γ. Thus, by taking n to be sufficiently large, the modulus

of Γ with respect to d̃ωn
becomes arbitrarily close to the Euclidean modulus.

We can now define the Cantor set E as follows. For a given t ∈ (0, 1/2) and n ∈ N,
let I(t), In(t) and ωn(t) denote respectively the sets I and In and the weight ωn
constructed above. For all j ∈ N, let tj = 2−j−2, observing that L1(I(tj)) = 1−2tj.
Let ω̃j = ωnj

(tj). By choosing nj sufficiently large, we can guarantee that

L1(Inj
(tj) ∩ Inj−1

(tj−1)) ≥ (1− 4tj)L1(Inj−1
(tj−1))

and that modπω̃j
Γ ≤ 2 + 1/j by applying (33) and (34). Inductively choosing nj

in this manner, we have

L1

(
j⋂

i=1

Ini
(ti)

)
≥

j∏

i=1

(1− 4ti) =

j∏

i=1

(1− 2−i).

Let E =
⋂∞
j=1 Inj

(tj) and let ω = χR2\E . Then L1(E) =
∏∞
j=1(1 − 2−j) > 0.

Moreover, ω ≥ ω̃j for all j ∈ N. This fact, combined with Theorem 2.6, yields
that 2 ≤ modπωΓ ≤ modπω̃j

Γ for all j ∈ N. We conclude that modπωΓ = 2 =
mod‖·‖2

Γ.
Let Γ∗ denote the family of paths connecting the bottom and top edges of Q.

It is clear that the function ρ∗ = 1/2χQ is admissible for Γ∗ with respect to the

metric d̃ω. Thus modd̃ω Γ∗ = 1/2 = mod‖·‖2
Γ∗. By Proposition 4.3, this suffices to

show that d̃ω is reciprocal.

7. Factoring quasiconformal mappings

The goal of this section is to prove Proposition 1.5 and Theorem 1.6. To pre-
pare for this, we first give in Section 7.1 an overview of isothermal quasiconformal
mappings. See [Iko19] for a more complete treatment. Section 7.2 gives the proof
of Proposition 1.5. This is followed by a discussion in Section 7.3 of the problem
of optimizing the distortion constant in Proposition 1.5. Finally, in Section 7.4, we
prove Theorem 1.6.



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 35

7.1. Isothermal Parametrizations. LetX be a quasiconformal surface. By The-
orem 6.2 in [Iko19], there exists a complete Riemannian surface Y of constant cur-
vature and a quasiconformal map

ψ : Y → X

with minimal pointwise distortion at almost every point: for every other Riemann-
ian surface Z and quasiconformal map ϕ : Z → X , the inequality

(35)
(
gψ(gψ−1 ◦ ψ)

)
◦ (ψ−1 ◦ ϕ) ≤ gϕ(gϕ−1 ◦ ϕ)

holds H2
Z -almost everywhere on Z. Recall that, for example, gψ and gψ−1 refer

to minimal weak upper gradients of ψ and ψ−1, respectively. In this case, we say
that (Y, ψ) is an isothermal parametrization of X . By Corollary 4.7 of [Iko19],
any isothermal parametrization ψ is quasiconformal with outer dilatation KO(ψ)
at most 4/π and inner dilatation KI(ψ) at most π/2. Also, the pointwise distortion

of ψ is bounded from above by
√
2 H2

Y -almost everywhere.
We elaborate on the meaning of (35) in the case when X = (R2, dN ) for some

norm N . Then we can take Y = R2 and ψ to be a linear map

ψ : R2 → (R2, dN )

such that gψ = L(N ◦ ψ) and gψ−1 = ω(N ◦ ψ)−1. Recall that L and ω denote,
respectively, the maximal and minimal stretching, defined in (6) and (7).

The inequality (35) implies that, for all other linear maps ϕ : R2 → (R2, N), we
have

(36)
L(N ◦ ψ)
ω(N ◦ ψ) ≤ L(N ◦ ϕ)

ω(N ◦ ϕ) .

In terms of the distortion of a norm defined in (8), the inequality (36) implies that
N ◦ ψ has the smallest possible distortion among such pairs ψ and ϕ. This can be
phrased in terms of the Banach–Mazur distance in convex geometry; see [Rom19]
and [Iko19, Section 4].

An isothermal parametrization of a quasiconformal surface is essentially unique.
This is also part of the content of Theorem 6.2 of [Iko19], partially quoted here.

Theorem 7.1 ([Iko19]). Let ψ : Y → X be an isothermal parametrization of X ,
and ϕ : Z → X a quasiconformal map from a Riemannian surface Z onto X . Then
ϕ is isothermal if and only if ψ−1 ◦ ϕ is a conformal diffeomorphism.

Let N be an admissible reciprocal norm field on R
2 that vanishes on the compact

set E ⊂ R2. The following lemma is a consequence of Theorem 4.16 of [Iko19].

Lemma 7.2. The identity map ι : R2 → (R2, dN ) is isothermal if and only if

(37)
L(Nx)

ω(Nx)
≤ L(Nx ◦ ϕ)
ω(Nx ◦ ϕ)

for all ϕ ∈ GL2, for L2-almost every x ∈ R2.

Observe that (37) is satisfied by the norm Nx = ‖·‖∞, and more generally by any
norm Nx whose unit ball is a square. Thus Lemma 7.2 has the following corollary.

Corollary 7.3. Suppose that N is reciprocal and that the unit ball of Nx is a
square for L2-almost every x ∈ R2. Then the identity map ι : R2 → (R2, dN ) is
isothermal.
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7.2. Proof of Proposition 1.5. Recall that we are assuming thatN is a reciprocal
norm field such that πN : Ω → (Ω, dN ) is isothermal, and that N is continuous
outside the set E = {x ∈ Ω : Nx = 0}.

Let G be a complete Riemannian norm field on Ω of constant Gaussian curvature
−1 or 0, which exists by the classical uniformization theorem. The field is of the
form G = ω ‖·‖2 for some smooth ω. Consider the norm field

M = χΩ\E
ω

ω(N)
N + χEG.

The function 1/ω(N) is continuous in Ω \ E due to the continuity of N outside E.
Then the distortion bound on N implies that M is a lower semicontinuous norm
field satisfying G ≤M ≤ HG everywhere.

Let d̂ = dM denote the distance induced by M . Then

dG ≤ d̂ ≤ HdG,

so the identity map P = πM : (Ω, dG) → (Ω, d̂) satisfies (3) and in particular is
H-bi-Lipschitz. Lemma 3.5 states that its metric differential coincides with M
L2-almost everywhere.

The proof is complete after we show that ι̂ = πN ◦ P−1 is 1-quasiconformal.
Recall that the metric derivatives of πN and P coincide with N and M , respectively.
Then, as a consequence of Corollary 5.15 and Proposition 5.12 of [Iko19], the 1-
quasiconformality is equivalent to proving that for L2-almost every x ∈ Ω, the
distortion of the identity map from (R2,Mx) to (R2, Nx) equals one L2-almost
everywhere.

Observe that, by the change of variables formula Lemma 3.6 and the Lusin’s
Condition (N−1) of πN , the set E has zero L2-measure, so we only need to check
the pointwise distortion in the complement of E. Here the claim is immediate, since
Mz = ω(z)Nz/ω(Nz) for every z ∈ Ω \ E. We conclude that ι̂ is 1-quasiconformal.

7.3. Remarks on optimal distortion. We discuss the question of when the op-
timal constant H =

√
2 in (3) in Proposition 1.5 can be achieved. We recall that

any planar quasiconformal mapping f : Ω → Ω̂ is a solution of the Beltrami equa-
tion fz = µfz, where µ : Ω → C is a measurable function satisfying ‖µ‖∞ < 1.
Conversely, the measurable Riemann mapping theorem provides a homeomorphic
solution to the Beltrami equation for any such µ. The function µ is called the
Beltrami coefficient. Geometrically, the choice of a Beltrami coefficient corresponds
to the choice of a measurable ellipse field on Ω modulo rescaling of the ellipses. See
Chapter 5 of [AIM09] for an in-depth overview of the topic.

Given a norm field N̂ on a domain Ω̂ ⊂ R2, one obtains an ellipse field on

Ω̂ by associating to each norm N̂x its distance ellipse, that is, the unique ellipse
E ⊂ BN̂x

(0, 1) having minimal λ ≥ 1 such that BN̂x
(0, 1) ⊂ λE . This in turn gives

a Beltrami coefficient µN̂ corresponding to N̂ . We refer the reader to [Iko19, Sec.
4] for more details.

This choice of ellipse field also determines an underlying Riemannian structure on

the metric space (Ω̂, dN̂ ). A consequence of the classical slit domain uniformization
theorem [AS60, Chapter III, Section 4] and [Iko19, Corollary 6.3] is the existence

of a domain Ω ⊂ R2 and a locally quasiconformal map ψ : Ω → Ω̂ such that f̂ =

πN̂ ◦ ψ is isothermal. Consider the distance d(x, y) = dN̂ (f̂(x), f̂ (y)) on Ω and

the norm field N = N̂ ◦ Dψ. Then the identity map ι : Ω → (Ω, d) is isothermal
and the metric differential of ι exists and equals N L2-almost everywhere. If the
norm field N obtained in this manner is continuous and non-zero outside E =
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ψ−1
(
{x ∈ Ω̂ : N̂x = 0}

)
, then Proposition 1.5 now holds with constant H =

√
2

for the space (Ω, d) and hence the original space (Ω̂, dN̂ ) as well.
The question of when the norm field N is continuous, in turn, depends upon the

regularity of the map ψ. In fact, if ψ is C1-continuous in Ω, thenN is continuous and
non-zero outside E. Since the map ψ arises as a solution to the Beltrami equation,
this leads to the question of regularity of solutions to the Beltrami equation. Indeed,

if we consider a domain U compactly contained in Ω̂, the restriction of ψ−1 to U
solves the Beltrami equation induced by µN̂ |U . The C1-continuity of ψ in U is

known to hold, for example, when µN̂ |U is C1-continuous, locally Hölder continuous

[AIM09, Theorem 15.0.7] or in W 1,p
loc (U) for a large enough p > 1 depending on the

L∞-norm of µN̂ |U [BCO19, Proposition 4].

Solutions of the Beltrami equation for µN̂ , even when N̂ is a continuous Rie-
mannian norm field, need not always be C1-continuous. In the following, we use
complex notation z = z1 + iz2 to denote the point (z1, z2) ∈ R2 and z = z1 − iz2 to
denote the complex conjugate of z. See Section 2.4 of [AIM09] for a brief overview
of complex notation. The following example is based on Section 15.1 of [AIM09].
Let

µ(z) =
z

z(1 + log ‖z‖22)
and consider the continuous Riemannian norm field N̂ on Ω̂ = B‖·‖

2
(0, e−1/2) de-

fined by N̂z(v) = ‖v + µ(z)v‖2. Then µ(z) = µN̂z
, where µN̂z

is the Beltrami

coefficient corresponding to the N̂ as described earlier in this remark. Even though

N̂ is continuous, every solution for the Beltrami equation for µN̂z
= µ(z) has a

discontinuous derivative at the origin. This is seen by considering the particular
solution g(z) = −z log ‖z‖22 and noticing that the differential Dg is discontinuous
at the origin. It is enough to check this property for g since, by the Stoilow factor-
ization theorem [AIM09, Theorem 5.5.1], every other quasiconformal solution is of
the form Ψ ◦ g for some conformal diffeomorphism Ψ.

For more general norm fields, we have the additional complexity that µN̂ can be

smooth even though N̂ is not. For example, consider the continuous norm field N̂

defined by N̂z(v) =
∥∥ei‖z‖2v

∥∥
∞

. Since the supremum norm is not C1-continuous

in R2 \ {0} we see that N̂ is not C1-continuous, for example by considering the
basepoint z = π/4 and the vector v = 1, even though µN̂ = 0. The identity µN̂ = 0
follows from Corollary 7.3.

7.4. Proof of Theorem 1.6. In this section, we present the construction used
to prove Theorem 1.6, namely of a quasiconformal surface whose isothermal pa-
rametrization cannot be factored as a bi-Lipschitz mapping postcomposed with a
quasiconformal mapping of smaller distortion. We begin by introducing the nota-
tion and parameters involved in Section 7.4.1. We develop various properties of
this construction in the following subsections, culminating with the proof of Theo-
rem 1.6 in Section 7.4.6.

7.4.1. Notation. Let us introduce the notation used in our construction. Our first
task is to construct a sequence of nested Cantor sets, denoted by K1,K2, . . . and
satisfying K1 ⊃ K2 ⊃ · · · . There are two intermediate steps used in our construc-
tion of the sets Ki. First, we define sets Eji for all i, j ∈ N, j ≥ i, to serve as base

collections of squares from which the Cantor sets are extracted. The sets Eji are

each the union of a collection of congruent closed squares Qji (k, l) that covers almost

all of [0, 1]2. The main feature of our construction is that the squares Qji (k, l) have
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Figure 1. A square Qji (k, l) ⊂ Eji for i odd and the intersection

Qji (k, l)∩Eji+1, shaded gray. The large outer square is Iji (k)×Jji (l).

the standard non-rotated alignment for odd values of i, while the square Qji (k, l)
are aligned diagonally for even values of i.

In the second intermediate step, we define inductively

F ji = Eji ∩ F ji−1 ∩ F j−1
i ∩ [0, 1]2

for all i, j ∈ N, j ≥ i, with the convention that F j0 = F i−1
i = [0, 1]2 for all i, j.

By taking Fi =
⋂
j F

j
i , we obtain a collection of nested Cantor sets. However, for

our construction to work, we need the further property that the intersection of the
Cantor sets is small. For this reason, we later define Ki to be a subset of Fi with
the property that diamKi → 0 as i→ ∞.

We take a moment to fix some additional notation. In the following, let I = J =
[0, 1] and let Q = I × J = [0, 1]2. We identify I with the set [0, 1]×{0} and J with
the set {0} × [0, 1]. Let π1 denote the standard projection map from R2 onto the
first coordinate axis, and let π2 denote the standard projection map from R2 onto
the second coordinate axis.

As mentioned above, the even-numbered Cantor sets are formed from squares
that are rotated by π/4 from the standard alignment. LetQ∗ denote the square with

vertices (1/2,−1/2), (3/2, 1/2), (1/2, 3/2), and (−1/2, 1/2). Let I∗ = J∗ = [0,
√
2].

We also identify I∗ with the set [0,
√
2] × {0} and J∗ with the set {0} × [0,

√
2].

Let ϕ : R2 → R2 be the orientation-preserving isometry that maps [0,
√
2]2 onto Q∗

and satisfies ϕ(0, 0) = (1/2,−1/2). Explicitly,

ϕ(x, y) = (1/2,−1/2)+
1√
2
(x− y, x+ y).

Thus ϕ(I∗×J∗) = Q∗. Next, let π∗
1 denote the projection map from Q∗ onto ϕ(I∗),

and let π∗
2 denote the projection map from Q∗ onto ϕ(J∗). Explicitly, π∗

1(x, y) =
ϕ(π1(ϕ

−1(x, y)), 0) and π∗
2(x, y) = ϕ(0, π2(ϕ

−1(x, y))).

The definition of the sets Eji involves three sets of parameters: εji > 0, N j
i ∈ N,

and aji ∈ N. A short explanation of these parameters is the following. The first

parameter εji gives an upper bound on the proportion of area lost when passing

from one step of the construction to the next. The second parameter N j
i gives the

number of subdivisions of the initial interval I or I∗ that are made when forming
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E1
1 → E2

1 E3
1 · · ·

↓ ր ↓
E2

2 E3
2 · · ·
↓
E3

3 · · ·
. . .

Figure 2. The sets Eji as ordered by �.

the squares that comprise Eji . The final parameter aji corresponds to the side length

of these squares. The precise relation is that the side length of a square in Eji is

(1− 2(aji )
−1)/N j

i for i odd and
√
2(1− 2(aji )

−1)/N j
i for i even.

7.4.2. Constructing the sets Eji . For two pairs of indices (i, j) and (i′, j′), we say
that (i, j) � (i′, j′) if j < j′ or if j = j′ and i ≤ i′. The relation � gives an ordering

on the set of indices (i, j). We consider the sets Eji as being traversed in this order.
We also write (i, j) ≺ (i′, j′) if j < j′ or if j = j′ and i < i′. Recall that here and
throughout this proof we consider only those indices i, j ∈ N for which j ≥ i. This
ordering is illustrated in Figure 2.

We first choose the parameters εji > 0 so that they satisfy
∏
i,j(1 − εji ) ≥ 1/2.

The factors in the product are traversed according to the ordering on {(i, j)} just
defined.

The sets Eji are defined for all i, j ∈ N satisfying j ≥ i in the following way.

Assume for the moment that we have made suitable choices of N j
i , a

j
i ∈ N. In the

case that i is odd, we divide I into N j
i equal subintervals Iji (k) = [(k−1)/N j

i , k/N
j
i ]

and J into N j
i equal subintervals Jji (l) = [(l−1)/N j

i , l/N
j
i ]. If i is even, we divide I∗

into N j
i equal subintervals Iji (k) = [

√
2(k − 1)/N j

i ,
√
2k/N j

i ] and J∗ into N j
i equal

subintervals Jji (l) = [
√
2(l − 1)/N j

i ,
√
2l/N j

i ]. This yields a collection of squares

Iji (k)×Jji (l), where k, l ∈ {1, . . . , N j
i }. If i is odd, let Qji (k, l) be the square of side

length (1− 2(aji )
−1)/N j

i with the same center and alignment as Iji (k)× Jji (l). If i

is even, define Qji (k, l) to be the square of side length
√
2(1− 2(aji )

−1)/N j
i with the

same center and alignment as ϕ(Iji (k)× Jji (l)). In this case, the square Qji (k, l) is
contained in Q∗ and is aligned diagonally. Let

Eji =
⋃

k,l

Qji (k, l).

The square Qji (k, l), for i odd, is given explicitly by
[(

k − 1 +
1

aji

)
1

N j
i

,

(
k − 1

aji

)
1

N j
i

]
×
[(

l − 1 +
1

aji

)
1

N j
i

,

(
l − 1

aji

)
1

N j
i

]
.

Let vji (k, l, 1), v
j
i (k, l, 2), v

j
i (k, l, 3), v

j
i (k, l, 4) denote the four vertices of Qji (k, l), tra-

versed counterclockwise from the bottom left. Let wji (k, l) denote the center point

of Qji (k, l).

Similarly, the square Qji (k, l), for i even, is the image under ϕ of the square

(38)

[(
k − 1 +

1

aji

) √
2

N j
i

,

(
k − 1

aji

) √
2

N j
i

]
×
[(

l − 1 +
1

aji

) √
2

N j
i

,

(
l − 1

aji

) √
2

N j
i

]
.

Let vji (k, l, 1), v
j
i (k, l, 2), v

j
i (k, l, 3), v

j
i (k, l, 4) denote the four vertices of Qji (k, l),

where vji (k, l, 1) is the image under ϕ of the bottom left vertex of the square in
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(38) and the rest are labelled in counterclockwise order. Let wji (k, l) denote the

center point of Qji (k, l).

The values of N j
i and aji are chosen inductively using the ordering �. Let N1

1 = 2
and choose a11 ∈ N so that L2(E1

1) ≥ 1 − ε11. For the inductive step, assume that

we have chosen N j′

i′ and aj
′

i′ for some pair (i′, j′), and that

L2


 ⋂

(i′′,j′′)�(i′,j′)

Ej
′′

i′′


 ≥

∏

(i′′,j′′)�(i′,j′)

(1− εj
′′

i′′ ).

Let (i, j) denote the pair immediately succeeding (i′, j′).

Define now N j
i = 2aj

′

i′N
j′

i′ . We then choose aji so that

L2


 ⋂

(i′′,j′′)�(i,j)

Ej
′′

i′′


 ≥

∏

(i′′,j′′)�(i,j)

(1− εj
′′

i′′ ).

This can be done because Eji can be made to have arbitrarily large area in, respec-

tively, Q or Q∗ by making aji sufficiently large.

We make the following observation. Fix (i, j) and consider a square Qji (k, l). For

all (i′, j′) such that (i, j) ≺ (i′, j′) and m,n ∈ {1, . . . , N j′

i′ }, the square Ij
′

i′ (m) ×
Jj

′

i′ (n), if i′ is odd, or ϕ(Ij
′

i′ (m)×Jj′i′ (n)), if i′ is even, is either entirely contained in

Qji (k, l), has interior disjoint from Qji (k, l), or intersects Qji (k, l) in a triangle whose

vertices are three of the vertices of Ij
′

i′ (m)× Jj
′

i′ (n).
We also observe a uniformity to how the squares are distributed. For each i, j, k, l,

we divide the square Qji (k, l) into four triangles whose vertices are two adjacent ver-

tices of Qji (k, l) and the midpoint of Qji (k, l). Denote these by T ji (k, l, 1), T
j
i (k, l, 2),

T ji (k, l, 3), T
j
i (k, l, 4), where T ji (k, l,m) contains the edge [vji (k, l,m), vji (k, l,m+1)],

taking vji (k, l, 5) = vji (k, l, 1).

Lemma 7.4. Let i, j, i′, j′ ∈ N, where (i, j) ≺ (i′, j′). For all k, l ∈ {1, . . . , N j
i }

and m ∈ {1, . . . , 4} satisfying T ji (k, l,m) ⊂ Q, the sets T ji (k, l,m) ∩ Ej
′

i′ are all
congruent.

Proof. This proof depends on the property that 2ajiN
j
i divides N j′

i′ . As a result,
squares at different levels of the construction intersect nicely. We consider the case
when i is odd.

First, suppose that i′ is also odd. For each m ∈ {1, . . . , 4}, consider the edge

eji (k, l,m) as defined above. We have π1(v
j
i (k, l, 1)) = π1(v

j
i (k, l, 4)) = k1(k, l)/N

j′

i′

and π1(v
j
i (k, l, 3)) = π1(v

j
i (k, l, 2)) = k3(k, l)/N

j′

i′ , where

k1(k, l) =
(ajik − aji + 1)N j′

i′

ajiN
j
i

and k3(k, l) =
(ajik − 1)N j′

i′

ajiN
j
i

.

Similarly, we have π2(v
j
i (k, l, 2)) = π2(v

j
i (k, l, 1)) = k2(k, l)/N

j′

i′ and π4(v
j
i (k, l, 3)) =

π4(v
j
i (k, l, 4)) = k4(k, l)/N

j′

i′ , where

k2(k, l) =
(aji l − aji + 1)N j′

i′

ajiN
j
i

and k4(k, l) =
(aji l − 1)N j′

i′

ajiN
j
i

.

Observe that ki(k, l) ∈ N for all i ∈ {1, . . . , 4}. We have then

Qji (k, l) = [k1(k, l)/N
j′

i′ , k3(k, l)/N
j′

i′ ]× [k2(k, l)/N
j′

i′ , k4(k, l)/N
j′

i′ ].
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We conclude from this that the intersection Qji (k, l) ∩Ej
′

i′ is precisely the union of
the squares

{Qj′i′ (k′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.
We also observe that

|k3(k, l)− k1(k, l)| = |k4(k, l)− k2(k, l)| =
(aji − 2)N j′

i′

ajiN
j
i

.

Thus the sets Qji (k, l) ∩ Ej
′

i′ are congruent for all k, l ∈ {1, . . . , N j
i }. Moreover,

notice that each set Qji (k, l) ∩ Ej
′

i′ is invariant under rotations by π/4 about the

center point wji (k, l). We conclude from this that the sets T ji (k, l,m) ∩ Ej
′

i′ are all
congruent.

Next, suppose that i′ is even. Consider now a triangle T ji (k, l,m). The two

shorter edges of T ji (k, l,m) are the edges of a rectangle Rji (k, l,m) of side length√
2(aji − 2)/(ajiN

j
i ). To keep the exposition more manageable, we write out the

argument only for T ji (k, l, 1). We compute

ϕ−1(vji (k, l, 1)) =

(
(ajik + aji l − 2aji + 2)

√
2

2ajiN
j
i

,− (−ajik + aji l + ajiN
j
i )
√
2

2ajiN
j
i

)

ϕ−1(vji (k, l, 2)) =

(
(ajik + aji l − aji )

√
2

2ajiN
j
i

,
(−ajik + aji l − aji + 2 + ajiN

j
i )
√
2

2ajiN
j
i

)
.

Comparing this with (38) and using the property that 2ajiN
j
i divides N j′

i′ , we have

ϕ−1(Rji (k, l,m)) =

[
k1(k, l)

√
2

N j′

i′

,
k3(k, l)

√
2

N j′

i′

]
×
[
k2(k, l)

√
2

N j′

i′

,
k4(k, l)

√
2

N j′

i′

]

for some k1(k, l), . . . , k4(k, l) ∈ N satisfying

|k3(k, l)− k1(k, l)| = |k4(k, l)− k2(k, l)| =
(aji − 2)N j′

i′

2ajiN
j
i

.

The intersection Rji (k, l, 1) ∩ Ej
′

i′ is the union of the squares

{Qj
′

i′ (k
′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.

Thus the sets Rji (k, l, 1) ∩ Ej
′

i′ are all congruent, and by symmetry it follows that

the sets T ji (k, l, 1) ∩ Ej
′

i′ are all congruent as well.
The case when i is even is similar and its proof is omitted. �

7.4.3. Constructing the Cantor sets. For all i, j, let F j0 = Q and F i−1
i = Q. Define

now

F ji = Eji ∩ F ji−1 ∩ F j−1
i

for all j ≥ i. Observe that
⋂

(i′′,j′′)�(i,j) E
j′′

i′′ ⊂ F ji , so we have L2(F ji ) ≥ 1/2 for all

i, j. Next, let Fi =
⋂
j≥i F

j
i .

Let K0 = R2. For each i ≥ 1, pick inductively a square Qi = Qii(ji, ki) with the
property that Qi ⊂ Qi−1. Let

Ki = Fi ∩Qi.
From Lemma 7.4, it follows that L2(Ki) = L2(Fi)/(N

i
i )

2. Moreover, we have that
diamKi → 0 as i→ 0, and in particular that

⋂
i Fi is a single point set.
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7.4.4. Dense networks of paths. The following portion of the argument relates to
having a “dense network of paths” at every stage.

We define the following subset of Ki. If i is even, let

Hi = Ki ∩ π−1
2 (I \ π2(Ki+1)).

If i is odd, let
Hi = Ki ∩ (π∗

2)
−1(I∗ \ π∗

2(Ki+1)).

For example, in Figure 1 representing the case where i is odd, a point x ∈ Ki ∩
Qji (k, l) belongs to Hi if the line t 7→ x + (t, t) does not intersect any of the gray
boxes.

Lemma 7.5. For every point x ∈ Ki+1 and r > 0, the set Hi ∩ B‖·‖
2
(x, r) has

positive L2-measure.

Proof. In the first case, we assume that i is even, and hence that i + 1 is odd.
Let x ∈ Ki+1 and r > 0. Consider a square Qji+1(k, l) containing x for some j

sufficiently large so that Qji+1(k, l) ⊂ B(x, r/3) and such that Qji+1(k, l) ⊂ Qi+1.

Pick a horizontal edge S of Qji+1(k, l) whose interior is contained in int(Qi+1).

Consider now the set Ej+1
i . Subdivide S into (aji+1 − 2)N j+1

i /(aji+1N
j
i+1) con-

gruent subintervals. Each subinterval is the diagonal of a square ϕ(Ij+1
i (k′) ×

Jj+1
i (l′)), with corresponding square Qj+1

i (k′, l′) ⊂ Ej+1
i . From such a square

Qj+1
i (k′, l′), we may extract a triangle T j+1

i (k′, l′,m′), as defined prior to the state-

ment of Lemma 7.4, whose interior does not intersect Eji+1. Observe further that

T j+1
i (k′, l′,m′) ⊂ Qi, so that

T j+1
i (k′, l′,m′) ∩ Fi = T j+1

i (k′, l′,m′) ∩Ki.

As a consequence of Lemma 7.4, we have that

L2(T j+1
i (k′, l′,m′) ∩ Fi) =

L2(Fi)

4(N j+1
i )2

.

Moreover, T j+1
i (k′, l′,m′) lies in the neighborhood of Qji+1(k, l) of radius

1/N j+1
i ≤ diamQji+1(k, l) < 2r/3,

so T j+1
i (k′, l′,m′) ⊂ B‖·‖

2
(x, r). Also, we have that

int(T j+1
i (k′, l′,m′)) ∩ Fi ⊂ Hi.

This verifies the claim.
The case that i is even and i+ 1 is odd is similar, and we omit the details. �

Lemma 7.6. Let x ∈ π1(Ki) be a Lebesgue density point of π1(Ki), where i ∈ N

is odd. Let δ > 0, and let t0 > 0 be such that

L1(π1(Ki) ∩ (x, x+ t))

t
≥ 1− δ

for all t ∈ (0, t0). Then for all y ∈ π1(Ki) satisfying |y − x| < 2δt,

L1(π1(Ki) ∩ (y, y + t))

t
≥ 1− 2δ.

The same result holds with π2 instead of π1. If i is even, the corresponding result
holds for π∗

1 and π∗
2 , identifying I∗ and J∗ with the interval [0,

√
2].

Proof. The first claim follows from the relationship

L1(π1(Ki) ∩ (y, y + t)) ≥ L1(π1(Ki) ∩ (x, x+ t))− |x− y|.
The other claims follow from a similar inequality. �
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7.4.5. Defining the metric on R2. Define a norm field N on R2 by the formula

Nx =

{
2−i/2‖ · ‖1 if x ∈ Ki \Ki+1, i even,

2−(i−1)/2‖ · ‖∞ if x ∈ Ki \Ki+1, i odd.

The norm field N is admissible in the sense of Definition 3.1, in particular being
lower semicontinuous, and induces a metric d on R2 as described in Section 3.
Observe that N vanishes at a single point. Theorem 1.3 and Corollary 7.3 imply
the following.

Proposition 7.7. The identity map ι : (R2, ‖·‖2) → (R2, d) is an isothermal qua-
siconformal mapping.

7.4.6. Proof of Theorem 1.6. We suppose to the contrary that there is a metric

space (X̂, d̂) such that a factorization ι = ι̂ ◦ P as in the statement of Theorem 1.6

exists, that is, that P is bi-Lipschitz and that ι̂ has distortion H(ι̂) <
√
2. Since ι

is Lipschitz, it follows that ι̂ is also Lipschitz.

By considering the metric d̂(P (x), P (y)) on R2, we assume without loss of gener-

ality that X̂ = R2 and that ι̂ and P are each the identity map on R2. Let N̂ denote

the metric derivative of the map P : (R2, ‖·‖2) → (R2, d̂) as defined in Definition 2.2.

By assumption, the identity map ι̂ : (R2, d̂) → (R2, d) is quasiconformal with

H(ι̂) <
√
2. Moreover, since P is Lipschitz, there exists C > 0 such that N̂x ≤

C ‖·‖1 for every x ∈ R2. Let v = (1, 0) and w = (1/
√
2, 1/

√
2), and let a =

H(ι̂)/
√
2 < 1. It suffices to show that, for all i ≥ 0 and almost every x ∈ Ki \Ki+1,

(39)
N̂x(w) ≤ Cai if i is even,

N̂x(v) ≤ Cai if i is odd.

This provides a contradiction. Indeed, given that P is bi-Lipschitz, N̂x(w) and

N̂x(v) are bounded from below for all x ∈ R2 by some constant C′ > 0.

Observe that, when i is even, Nx(w) =
√
2Nx(v) for all x ∈ Ki \Ki+1. Similarly,

when i is odd, Nx(v) =
√
2Nx(w). It follows from Proposition 5.12 of [Iko19] that

the pointwise distortion of ι̂ coincides with the distortion of the identity map from

(R2, N̂x) to (R2, Nx) for almost every x ∈ R2. As a consequence, for almost every
x ∈ Ki \Ki+1,

(40)
N̂x(v) ≤ aN̂x(w) if i is even,

N̂x(w) ≤ aN̂x(v) if i is odd.

We verify (39) by induction on i. The claim is immediate for i = 0, recalling
that K0 = R2. For the inductive step, fix i ≥ 1 and assume that (39) holds for
almost every x ∈ R2 \Ki. We show that (39) holds for almost every x ∈ Ki \Ki+1.
Let Ni−1 denote the set of points in Ki−1 \Ki for which (39) or (40) fails. We split
into two cases based upon on whether i is odd or even. The idea is the same in
each, but the bookkeeping requires separate statements.

Case 1. Assume that i is odd. By the inductive hypothesis, we have N̂x(v) ≤
aN̂x(w) ≤ Cai for every x ∈ (Ki−1 \Ki) \Ni−1, where Ni−1 has L2-measure zero.

We claim that N̂x(v) ≤ Cai for almost every x ∈ Ki\Ki+1. Assume to the contrary
that there exists a set G ⊂ Ki \Ki+1 of positive measure and a constant b > 0 such

that N̂x(v) ≥ (C + b)ai for all x ∈ G.
For all t ∈ [0, 1], let γt : I → R2 be the path defined by γt(s) = (s, t). According

to Lemma 2.5, for every path γt and every subinterval I ′ ⊂ I,

ℓd̂(γt|I′) =
∫

I′
N̂γt(s)(v) dL1.
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Consider now the interval [s0, s0 + h] for some s0 ∈ (0, 1) and h ∈ (0, 1 − s0).
Differentiating, we have for L2-almost every (s0, t) ∈ G that

lim
h→0

d̂(γt(s0), γt(s0 + h))

h
= lim

h→0

ℓd̂(γt|[s0,s0+h])
h

≥ (C + b)ai.

In particular, for almost every x ∈ G, there exists r0 > 0 such that

(41) d̂(x, x+ rv) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider now a point x ∈ G such that π∗

1(x) is a Lebesgue
density point of π∗

1(Ki−1) and π∗
2(x) is a Lebesgue density point of π∗

2(Ki−1). Note
that by Fubini’s theorem, L2-almost every point in G has this property. Let δ > 0
and let t0 = t0(δ) be such that the hypothesis in Lemma 7.6 is satisfied for both
the point π∗

1(x) and the point π∗
2(x).

For all ε > 0, let H(x, ε) be the set comprising those points y ∈ Hi−1∩B‖·‖
2
(x, ε)

for which

H1
‖·‖

2
(Ni−1 ∩ π−1

2 (π2(y))) = 0.

Recall that the set Hi−1 is defined in Section 7.4.4. By Lemma 7.5, the set Hi−1 ∩
B‖·‖

2
(x, ε) has positive L2-measure. SinceNi−1 has L2-measure zero, an application

of Fubini’s theorem shows that H(x, ε) is a full measure subset of Hi−1∩B‖·‖
2
(x, ε).

Let r ∈ (0, t0) and ε ∈ (0, 2δr).
Consider a point y ∈ H(x, ε). Let γy : [0, r] → R2 be the path defined by

γy(s) = y + sv. Lemma 2.5 implies that

ℓd̂(γy) =

∫

[0,r]

N̂γy(s)(v) dL1(s),

and the definition of H(x, ε) implies that

(42) N̂z(v) ≤ Cai

for H1
‖·‖

2

-almost every z ∈ Ki−1 ∩ |γy|.
Next, we estimate the H1

‖·‖
2

-measure of Ki−1 ∩ |γy|. To this end, observe that

the path γ1y : [0, r] → R, γ1y(s) = y + sw/
√
2, intersects Ki−1 in a set congruent to

π∗
1(Ki−1) ∩ π∗

1(|γ1y |). Similarly, the path γ2y : [0, r] → R, γ2y(s) = y + sw/
√
2, where

w = (1/
√
2,−1/

√
2), intersects Ki−1 in a set congruent to π∗

2(Ki−1) ∩ π∗
2(|γ2y |).

Since |π∗
m(y)− π∗

m(x)| < 2δr, Lemma 7.6 gives, for m ∈ {1, 2},

(43)
H1

‖·‖
2

(Ki−1 ∩ |γmy |)
r/
√
2

≥ 1− 2δ.

We combine this with the following observation: for any measurable sets E1, E2 ⊂
[0, r] satisfying |Ej | ≥ (1 − εj)r for some εj ∈ (0, 1), j ∈ {1, 2}, the diagonal path
γ : [0, r] → [0, r]2 defined by γ(s) = (s, s) intersects E1 × E2 in a set of length at

least
√
2(1− ε1− ε2)r. Since Ki−1 is constructed as a product set relative to which

γy is a diagonal path, we conclude from (43) that

(44)
H1

‖·‖
2

(Ki−1 ∩ |γy|)
r

≥ 1− 4δ.

Using (42) and the fact that N̂z(v) ≤ C for all z ∈ R2, the inequality (44) gives

d̂(y, y + rv) ≤ (1− 4δ)Cair + 4δCr.

Next, by making the initial choice of δ sufficiently small, we have

d̂(y, y + rv) ≤ (1 + δ)Cair.
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From this and the relationship d̂ ≤ Cd‖·‖
1
≤

√
2Cd‖·‖

2
, it follows that

d̂(x, x + rv) ≤ 2
√
2Cε+ (1 + δ)Cair.

Since ε ∈ (0, 2δr) is arbitrary, we obtain

d̂(x, x+ rv) ≤ (1 + δ)Cair.

Since this estimate holds for L2-almost every x ∈ G, this contradicts our earlier

statement (41) when δ is sufficiently small. We conclude that N̂x(v) ≤ Cai for
almost every x ∈ Ki \Ki+1.

Case 2. We now consider the case that i is even. The idea is the same as in the
first case, but now everything is rotated by π/4. By the inductive hypothesis, we

have that N̂x(w) ≤ aN̂x(v) ≤ Cai for every x ∈ (Ki−1 \Ki) \Ni−1. We claim that

N̂x(w) ≤ Cai for almost every x ∈ Ki \Ki+1. Assume to the contrary that there
exists a set G ⊂ Ki \ Ki+1 of positive measure and a constant b > 0 such that

N̂x(w) ≥ (C + b)ai for all x ∈ G.
For all t ∈ J∗, let γt : I

∗ → R2 be the path defined by γt(s) = ϕ(s, t). Consider

as before the interval [s0, s0 + h] for some s0 ∈ (0,
√
2) and h ∈ (0,

√
2 − s0).

Differentiating, we have that

lim
h→0

ℓd̂(γt|[s0,s0+h])
h

≥ (C + b)ai.

In particular, for L2-almost every x ∈ G, there exists r0 > 0 such that

(45) d̂(x, x + rw) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider a point x ∈ G such that π1(x) is a Lebesgue density

point of π1(Ki−1) and π2(x) is a Lebesgue density point of π2(Ki−1). Let δ > 0
and let t0 = t0(δ) be the corresponding value in Lemma 7.6. For all ε > 0, define
the set H(x, ε) as the set of points y ∈ Hi−1 ∩B‖·‖

2
(x, ε) for which

H1
‖·‖

2
(Ni−1 ∩ (π∗

2)
−1(π∗

2(y))) = 0.

As before, H(x, ε) is a full measure subset of Hi−1 ∩B‖·‖
2
(x, ε). Let r ∈ (0, t0) and

ε ∈ (0, 2δr).
For all y ∈ H(x, ε), define the path γy : [0, r] → R

2 by γy(s) = y + sw. Recall
from Lemma 2.5 that

ℓd̂(γy) =

∫

[0,r]

N̂γy(s)(w) dL1.

Moreover, N̂z(w) ≤ Cai for H1
‖·‖

2

-almost every z ∈ Ki−1 ∩ |γy|. Arguing as in the

first case, we obtain the inequality

d̂(y, y + rw) ≤ (1− 4δ)Cair + 2δCr.

Next, by taking δ sufficiently small, we then have d̂(y, y + rw) ≤ (1 + δ)Cair. As
before, since ε ∈ (0, 2δr) is arbitrary,

d̂(x, x+ rw) ≤ (1 + δ)Cair,

which contradicts (45) for sufficiently small δ > 0. We conclude that N̂x(w) ≤ Cai

for almost every x ∈ Ki \Ki+1.
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