dc.contributor.author | Multamäki, Elina | |
dc.contributor.author | García de Fuentes, Andrés | |
dc.contributor.author | Sieryi, Oleksii | |
dc.contributor.author | Bykov, Alexander | |
dc.contributor.author | Gerken, Uwe | |
dc.contributor.author | Ranzani, Américo Tavares | |
dc.contributor.author | Köhler, Jürgen | |
dc.contributor.author | Meglinski, Igor | |
dc.contributor.author | Möglich, Andreas | |
dc.contributor.author | Takala, Heikki | |
dc.date.accessioned | 2022-08-25T11:08:56Z | |
dc.date.available | 2022-08-25T11:08:56Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Multamäki, E., García de Fuentes, A., Sieryi, O., Bykov, A., Gerken, U., Ranzani, A. T., Köhler, J., Meglinski, I., Möglich, A., & Takala, H. (2022). Optogenetic Control of Bacterial Expression by Red Light. <i>ACS Synthetic Biology</i>, <i>11</i>(10), 3354-3367. <a href="https://doi.org/10.1021/acssynbio.2c00259" target="_blank">https://doi.org/10.1021/acssynbio.2c00259</a> | |
dc.identifier.other | CONVID_151794832 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82826 | |
dc.description.abstract | In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | ACS Synthetic Biology | |
dc.rights | CC BY 4.0 | |
dc.subject.other | fytokromit | |
dc.subject.other | gene expression | |
dc.subject.other | optogenetics | |
dc.subject.other | phytochrome | |
dc.subject.other | sensory photoreceptor | |
dc.subject.other | signal transduction | |
dc.subject.other | two-component system | |
dc.title | Optogenetic Control of Bacterial Expression by Red Light | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208254358 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Solu- ja molekyylibiologia | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Cell and Molecular Biology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3354-3367 | |
dc.relation.issn | 2161-5063 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 11 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 330678 | |
dc.subject.yso | optogenetiikka | |
dc.subject.yso | valo | |
dc.subject.yso | fotobiologia | |
dc.subject.yso | geeniekspressio | |
dc.subject.yso | bakteerit | |
dc.subject.yso | reseptorit (biokemia) | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27165 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5742 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27666 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25831 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1749 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38884 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acssynbio.2c00259 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland grant 330678 (H.T.), Three-year grant 2018–2020 from the University of Helsinki (E.M and H.T.), and Bayreuth Humboldt Centre Senior Fellowship 2020 (E. M., A.M., and H.T.). A.M. acknowledges support by the Deutsche Forschungsgemeinschaft (MO2192/6–2) and the European Commission (FET Open NEUROPA, grant agreement 863214). | |
dc.type.okm | A1 | |