Show simple item record

dc.contributor.authorMultamäki, Elina
dc.contributor.authorGarcía de Fuentes, Andrés
dc.contributor.authorSieryi, Oleksii
dc.contributor.authorBykov, Alexander
dc.contributor.authorGerken, Uwe
dc.contributor.authorRanzani, Américo Tavares
dc.contributor.authorKöhler, Jürgen
dc.contributor.authorMeglinski, Igor
dc.contributor.authorMöglich, Andreas
dc.contributor.authorTakala, Heikki
dc.date.accessioned2022-08-25T11:08:56Z
dc.date.available2022-08-25T11:08:56Z
dc.date.issued2022
dc.identifier.citationMultamäki, E., García de Fuentes, A., Sieryi, O., Bykov, A., Gerken, U., Ranzani, A. T., Köhler, J., Meglinski, I., Möglich, A., & Takala, H. (2022). Optogenetic Control of Bacterial Expression by Red Light. <i>ACS Synthetic Biology</i>, <i>11</i>(10), 3354-3367. <a href="https://doi.org/10.1021/acssynbio.2c00259" target="_blank">https://doi.org/10.1021/acssynbio.2c00259</a>
dc.identifier.otherCONVID_151794832
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82826
dc.description.abstractIn optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Synthetic Biology
dc.rightsCC BY 4.0
dc.subject.otherfytokromit
dc.subject.othergene expression
dc.subject.otheroptogenetics
dc.subject.otherphytochrome
dc.subject.othersensory photoreceptor
dc.subject.othersignal transduction
dc.subject.othertwo-component system
dc.titleOptogenetic Control of Bacterial Expression by Red Light
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208254358
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3354-3367
dc.relation.issn2161-5063
dc.relation.numberinseries10
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber330678
dc.subject.ysooptogenetiikka
dc.subject.ysovalo
dc.subject.ysofotobiologia
dc.subject.ysogeeniekspressio
dc.subject.ysobakteerit
dc.subject.ysoreseptorit (biokemia)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27165
jyx.subject.urihttp://www.yso.fi/onto/yso/p5742
jyx.subject.urihttp://www.yso.fi/onto/yso/p27666
jyx.subject.urihttp://www.yso.fi/onto/yso/p25831
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p38884
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acssynbio.2c00259
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland grant 330678 (H.T.), Three-year grant 2018–2020 from the University of Helsinki (E.M and H.T.), and Bayreuth Humboldt Centre Senior Fellowship 2020 (E. M., A.M., and H.T.). A.M. acknowledges support by the Deutsche Forschungsgemeinschaft (MO2192/6–2) and the European Commission (FET Open NEUROPA, grant agreement 863214).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0