Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds
Nobili, F., & Violo, I. Y. (2022). Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds. Calculus of Variations and Partial Differential Equations, 61(5), Article 180. https://doi.org/10.1007/s00526-022-02284-7
Date
2022Copyright
© The Author(s) 2022.
We prove that if M is a closed n-dimensional Riemannian manifold, n \ge 3, with \mathrm{Ric}\ge n-1 and for which the optimal constant in the critical Sobolev inequality equals the one of the n-dimensional sphere \mathbb {S}^n, then M is isometric to \mathbb {S}^n. An almost-rigidity result is also established, saying that if equality is almost achieved, then M is close in the measure Gromov–Hausdorff sense to a spherical suspension. These statements are obtained in the \mathrm {RCD}-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sobolev inequality on any compact \mathrm {CD} space, extending to the non-smooth setting a classical result by Aubin. Our arguments are based on a new concentration compactness result for mGH-converging sequences of \mathrm {RCD} spaces and on a Pólya–Szegő inequality of Euclidean-type in \mathrm {CD} spaces. As an application of the technical tools developed we prove both an existence result for the Yamabe equation and the continuity of the generalized Yamabe constant under measure Gromov–Hausdorff convergence, in the \mathrm {RCD}-setting.
...
Publisher
Springer Science and Business Media LLCISSN Search the Publication Forum
0944-2669Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/148958317
Metadata
Show full item recordCollections
Additional information about funding
Open Access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition
Liu, Jiayin; Zhang, Shijin; Zhou, Yuan (Elsevier, 2024)We build up a quantitative second-order Sobolev estimate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci curvature bounded from below and also for positive weighted p-harmonic functions w in ... -
Improved hardy inequalities on Riemannian manifolds
Mohanta, Kaushik; Tyagi, Jagmohan (Taylor & Francis, 2023)We study the following version of Hardy-type inequality on a domain Ω in a Riemannian manifold (M,g): ∫Ω|∇u|pgραdVg≥(|p−1+β|p)p∫Ω|u|p|∇ρ|pg|ρ|pραdVg+∫ΩV|u|pραdVg,∀u∈C∞c(Ω). We provide sufficient conditions on p,α,β,ρ ... -
Translating Solitons Over Cartan–Hadamard Manifolds
Casteras, Jean-Baptiste; Heinonen, Esko; Holopainen, Ilkka; De Lira, Jorge H. (Springer Science and Business Media LLC, 2023)We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan–Hadamard manifolds. We show that the asymptotic behavior of entire solitons depends heavily on ... -
Stable reconstruction of simple Riemannian manifolds from unknown interior sources
de Hoop, Maarten V.; Ilmavirta, Joonas; Lassas, Matti; Saksala, Teemu (IOP Publishing, 2023)Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct ...