Updating strategies for distance based classification model with recursive least squares
Raita-Hakola, A.-M., & Pölönen, I. (2022). Updating strategies for distance based classification model with recursive least squares. In J. Jiang, A. Shaker, & H. Zhang (Eds.), XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III (V-3-2022, pp. 163-170). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-V-3-2022-163-2022
Julkaistu sarjassa
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information SciencesPäivämäärä
2022Oppiaine
Laskennallinen tiedeComputing, Information Technology and MathematicsTietotekniikkaComputational ScienceComputing, Information Technology and MathematicsMathematical Information TechnologyTekijänoikeudet
© Author(s) 2022.
The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach maximum classification accuracy quickly.
The results show that the new self-learning MLM method can classify new classes with RLS update but with a cost of decreasing accuracy. With a larger amount of reference points, one class can be introduced with reasonable accuracy. The results of experiment B indicate that self-learning MLM can be trained with a few reference points, and the self-learning model quickly reaches accuracy results comparable with nearest-neighbour NN-MLM. It seems that the self-learning MLM could be a comparable machine learning method for the application of hyperspectral imaging and remote sensing.
...
Julkaisija
Copernicus PublicationsKonferenssi
International Society for Photogrammetry and Remote Sensing CongressKuuluu julkaisuun
XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission IIIISSN Hae Julkaisufoorumista
2194-9042Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/150901592
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This study is partly funded by the Academy of Finland (Grant No. 327862).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
Description of movement sensor dataset for dog behavior classification
Vehkaoja, Antti; Somppi, Sanni; Törnqvist, Heini; Valldeoriola Cardó, Anna; Kumpulainen, Pekka; Väätäjä, Heli; Majaranta, Päivi; Surakka, Veikko; Kujala, Miiamaaria V.; Vainio, Outi (Elsevier, 2022)Movement sensor data from seven static and dynamic dog behaviors (sitting, standing, lying down, trotting, walking, playing, and (treat) searching i.e. sniffing) was collected from 45 middle to large sized dogs with six ... -
A Computational Approach to Bio-optical Functional Group Classification of Phytoplankton in Inland Waters
Naik, Pritish; Pölönen, Ilkka; Salmi, Pauliina (Aalto-yliopisto, 2024) -
Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images
Turkulainen, Emma; Honkavaara, Eija; Näsi, Roope; Oliveira, Raquel A.; Hakala, Teemu; Junttila, Samuli; Karila, Kirsi; Koivumäki, Niko; Pelto-Arvo, Mikko; Tuviala, Johanna; Östersund, Madeleine; Pölönen, Ilkka; Lyytikäinen-Saarenmaa, Päivi (MDPI AG, 2023)The widespread tree mortality caused by the European spruce bark beetle (Ips typographus L.) is a significant concern for Norway spruce-dominated (Picea abies H. Karst) forests in Europe and there is evidence of increases ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.