dc.contributor.author | Raita-Hakola, Anna-Maria | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.editor | Jiang, J. | |
dc.contributor.editor | Shaker, A. | |
dc.contributor.editor | Zhang, H. | |
dc.date.accessioned | 2022-08-16T09:19:24Z | |
dc.date.available | 2022-08-16T09:19:24Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Raita-Hakola, A.-M., & Pölönen, I. (2022). Updating strategies for distance based classification model with recursive least squares. In J. Jiang, A. Shaker, & H. Zhang (Eds.), <i>XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III</i> (V-3-2022, pp. 163-170). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. <a href="https://doi.org/10.5194/isprs-annals-V-3-2022-163-2022" target="_blank">https://doi.org/10.5194/isprs-annals-V-3-2022-163-2022</a> | |
dc.identifier.other | CONVID_150901592 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82587 | |
dc.description.abstract | The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach maximum classification accuracy quickly.
The results show that the new self-learning MLM method can classify new classes with RLS update but with a cost of decreasing accuracy. With a larger amount of reference points, one class can be introduced with reasonable accuracy. The results of experiment B indicate that self-learning MLM can be trained with a few reference points, and the self-learning model quickly reaches accuracy results comparable with nearest-neighbour NN-MLM. It seems that the self-learning MLM could be a comparable machine learning method for the application of hyperspectral imaging and remote sensing. | en |
dc.format.extent | 711 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Copernicus Publications | |
dc.relation.ispartof | XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III | |
dc.relation.ispartofseries | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
dc.rights | CC BY 4.0 | |
dc.subject.other | hyperspectral imaging | |
dc.subject.other | Minimal Learning Machine | |
dc.subject.other | Recursive Least Squares | |
dc.subject.other | classification | |
dc.subject.other | real-time computation | |
dc.subject.other | machine learning | |
dc.title | Updating strategies for distance based classification model with recursive least squares | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202208164131 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 163-170 | |
dc.relation.issn | 2194-9042 | |
dc.relation.volume | V-3-2022 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Author(s) 2022. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | International Society for Photogrammetry and Remote Sensing Congress | |
dc.relation.grantnumber | 327862 | |
dc.subject.yso | hyperspektrikuvantaminen | |
dc.subject.yso | luokitus (toiminta) | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | kaukokartoitus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39290 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12668 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2521 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.5194/isprs-annals-V-3-2022-163-2022 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This study is partly funded by the Academy of Finland (Grant No. 327862). | |
dc.type.okm | A4 | |