dc.contributor.author | Mehtätalo, Lauri | |
dc.contributor.author | Yazigi, Adil | |
dc.contributor.author | Kansanen, Kasper | |
dc.contributor.author | Packalen, Petteri | |
dc.contributor.author | Lähivaara, Timo | |
dc.contributor.author | Maltamo, Matti | |
dc.contributor.author | Myllymäki, Mari | |
dc.contributor.author | Penttinen, Antti | |
dc.date.accessioned | 2022-08-16T08:12:41Z | |
dc.date.available | 2022-08-16T08:12:41Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Mehtätalo, L., Yazigi, A., Kansanen, K., Packalen, P., Lähivaara, T., Maltamo, M., Myllymäki, M., & Penttinen, A. (2022). Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model. <i>International Journal of Applied Earth Observation and Geoinformation</i>, <i>112</i>, Article 102920. <a href="https://doi.org/10.1016/j.jag.2022.102920" target="_blank">https://doi.org/10.1016/j.jag.2022.102920</a> | |
dc.identifier.other | CONVID_151014083 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82579 | |
dc.description.abstract | Airborne Laser Scanning (ALS) results in point-wise measurements of canopy height, which can further be used for Individual Tree Detection (ITD). However, ITD cannot find all trees because small trees can hide below larger tree crowns. Here we discuss methods where the plot totals and means of tree-level characteristics are estimated in such context. The starting point is a previously presented Horvitz–Thompson-like (HT-like) estimator, where the detectability is based on the larger tree crowns and a tuning parameter that models the detection condition. We propose a new method which is based on modeling the spatial pattern of hidden tree locations using a sequential spatial point process model, with a tuning parameter . We also explore whether the variability of the tuning parameters and can be predicted using ALS features to improve the predictions. The accuracy of stand density, dominant height and mean height is used as comparison criteria in a cross-validation procedure. The HT-like estimator with empirically estimated tuning parameter performed the best. The overall performance of the new method was comparable. The new method was computationally less demanding, which makes it attractive for practical use. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartofseries | International Journal of Applied Earth Observation and Geoinformation | |
dc.rights | CC BY 4.0 | |
dc.subject.other | forest inventory | |
dc.subject.other | Airborne Laser Scanning | |
dc.subject.other | Horvitz-Thompson-like estimator | |
dc.subject.other | stand density:tree height | |
dc.title | Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208164123 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1569-8432 | |
dc.relation.volume | 112 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Author(s). Published by Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | mittausmenetelmät | |
dc.subject.yso | inventointi | |
dc.subject.yso | tiheys | |
dc.subject.yso | lasertekniikka | |
dc.subject.yso | mittauslaitteet | |
dc.subject.yso | laserlaitteet | |
dc.subject.yso | puut (kasvit) | |
dc.subject.yso | laserit | |
dc.subject.yso | metsänarviointi | |
dc.subject.yso | metsät | |
dc.subject.yso | kaukokartoitus | |
dc.subject.yso | puusto | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20083 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10397 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14628 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20011 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3583 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1144 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8147 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1145 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18894 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5454 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2521 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13847 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.jag.2022.102920 | |
jyx.fundinginformation | This research was financially supported by the Academy of Finland through (1) the Finnish Centre of Excellence of Inverse Modeling and Imaging, (2) the flagship program “Forest-Human–Machine Interplay - Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE, decision number 337655)”, and (3) research projects 295100, 310073, 321761, 327211 and 351525. | |
dc.type.okm | A1 | |