Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model
Mehtätalo, L., Yazigi, A., Kansanen, K., Packalen, P., Lähivaara, T., Maltamo, M., Myllymäki, M., & Penttinen, A. (2022). Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model. International Journal of Applied Earth Observation and Geoinformation, 112, Article 102920. https://doi.org/10.1016/j.jag.2022.102920
Julkaistu sarjassa
International Journal of Applied Earth Observation and GeoinformationTekijät
Päivämäärä
2022Tekijänoikeudet
© 2022 The Author(s). Published by Elsevier B.V.
Airborne Laser Scanning (ALS) results in point-wise measurements of canopy height, which can further be used for Individual Tree Detection (ITD). However, ITD cannot find all trees because small trees can hide below larger tree crowns. Here we discuss methods where the plot totals and means of tree-level characteristics are estimated in such context. The starting point is a previously presented Horvitz–Thompson-like (HT-like) estimator, where the detectability is based on the larger tree crowns and a tuning parameter that models the detection condition. We propose a new method which is based on modeling the spatial pattern of hidden tree locations using a sequential spatial point process model, with a tuning parameter . We also explore whether the variability of the tuning parameters and can be predicted using ALS features to improve the predictions. The accuracy of stand density, dominant height and mean height is used as comparison criteria in a cross-validation procedure. The HT-like estimator with empirically estimated tuning parameter performed the best. The overall performance of the new method was comparable. The new method was computationally less demanding, which makes it attractive for practical use.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
1569-8432Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/151014083
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was financially supported by the Academy of Finland through (1) the Finnish Centre of Excellence of Inverse Modeling and Imaging, (2) the flagship program “Forest-Human–Machine Interplay - Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE, decision number 337655)”, and (3) research projects 295100, 310073, 321761, 327211 and 351525.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Modeling Forest Tree Data Using Sequential Spatial Point Processes
Yazigi, Adil; Penttinen, Antti; Ylitalo, Anna-Kaisa; Maltamo, Matti; Packalen, Petteri; Mehtätalo, Lauri (Springer, 2022)The spatial structure of a forest stand is typically modeled by spatial point process models. Motivated by aerial forest inventories and forest dynamics in general, we propose a sequential spatial approach for modeling ... -
Airborne-laser-scanning-derived auxiliary information discriminating between broadleaf and conifer trees improves the accuracy of models for predicting timber volume in mixed and heterogeneously structured forests
Bont, Leo Gallus; Hill, Andreas; Waser, Lars T.; Bürgi, Anton; Ginzler, Christian; Blattert, Clemens (Elsevier, 2020)Managing forests for ecosystem services and biodiversity requires accurate and spatially explicit forest inventory data. A major objective of forest management inventories is to estimate the standing timber volume for ... -
Deducing self-interaction in eye movement data using sequential spatial point processes
Penttinen, Antti; Ylitalo, Anna-Kaisa (Elsevier BV, 2016)Eye movement data are outputs of an analyser tracking the gaze when a person is inspecting a scene. These kind of data are of increasing importance in scientific research as well as in applications, e.g. in marketing and ... -
Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables
Tuominen, Sakari; Balazs, Andras; Honkavaara, Eija; Pölönen, Ilkka; Saari, Heikki; Hakala, Teemu; Viljanen, Niko (Suomen metsätieteellinen seura, 2017)Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital ... -
Forest management optimization across spatial scales to reconcile economic and conservation objectives
Pohjanmies, Tähti; Eyvindson, Kyle; Mönkkönen, Mikko (Public Library of Science, 2019)Conflicts between biodiversity conservation and resource production can be mitigated by multi-objective management planning. Optimizing management for multiple objectives over larger land areas likely entails trading off ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.