Näytä suppeat kuvailutiedot

dc.contributor.authorCougoulic, Florian
dc.contributor.authorKovchegov, Yuri V.
dc.contributor.authorTarasov, Andrey
dc.contributor.authorTawabutr, Yossathorn
dc.date.accessioned2022-08-15T12:49:13Z
dc.date.available2022-08-15T12:49:13Z
dc.date.issued2022
dc.identifier.citationCougoulic, F., Kovchegov, Y. V., Tarasov, A., & Tawabutr, Y. (2022). Quark and gluon helicity evolution at small x : revised and updated. <i>Journal of High Energy Physics</i>, <i>2022</i>(7), Article 95. <a href="https://doi.org/10.1007/jhep07(2022)095" target="_blank">https://doi.org/10.1007/jhep07(2022)095</a>
dc.identifier.otherCONVID_150878441
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82551
dc.description.abstractWe revisit the problem of small Bjorken-x evolution of the gluon and flavor-singlet quark helicity distributions in the shock wave (s-channel) formalism. Earlier works on the subject in the same framework resulted in an evolution equation for the gluon field-strength F12 and quark "axial current" ψ¯γ+γ5ψ operators (sandwiched between the appropriate light-cone Wilson lines) in the double-logarithmic approximation (DLA: summing powers of αsln2(1/x) with αs the strong coupling constant). In this work, we observe that an important mixing of the above operators with another gluon operator, D←iDi, also sandwiched between the light-cone Wilson lines (with the repeated index i=1,2 summed over), was missing in the previous works. This operator has the physical meaning of the sub-eikonal (covariant) phase: its contribution to helicity evolution is shown to be proportional to another sub-eikonal operator, Di−D←i, which is related to the Jaffe-Manohar polarized gluon distribution. In this work we include this operator into small-x helicity evolution, and construct a novel evolution mixing all three operators (Di−D←i, F12, and ψ¯γ+γ5ψ), generalizing the previous results. We also construct closed DLA evolution equations in the large-Nc and large-Nc&Nf limits, with Nc and Nf the numbers of quark colors and flavors, respectively. Solving the large-Nc equations numerically we obtain the following small-x asymptotics of the quark and gluon helicity distributions ΔΣ and ΔG, along with the g1 structure function, ΔΣ(x,Q2)∼ΔG(x,Q2)∼g1(x,Q2)∼(1x)3.66αsNc2π√, in complete agreement with the earlier work by Bartels, Ermolaev and Ryskin.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesJournal of High Energy Physics
dc.rightsCC BY 4.0
dc.titleQuark and gluon helicity evolution at small x : revised and updated
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208154095
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1126-6708
dc.relation.numberinseries7
dc.relation.volume2022
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors. Article funded by SCOAP3
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber681707
dc.relation.grantnumber681707
dc.relation.grantnumber321840
dc.relation.grantnumber824093
dc.relation.grantnumber824093
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/681707/EU//CGCglasmaQGP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/jhep07(2022)095
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramERC European Research Council, H2020en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramERC European Research Council, H2020fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundinginformationThis material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286. The work of F.C. has been supported by the Academy of Finland, by the Centre of Excellence in Quark Matter and project 321840, and under the European Union’s Horizon 2020 research and innovation programme by the STRONG-2020 project (grant agreement No 824093) and by the European Research Council, grant agreement ERC-2015-CoG-681707. The content of this article does not reflect the official opinion of the European Union and responsibility for the information and views expressed therein lies entirely with the authors.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0