Fabrication of DNA origami lattice on silicon surface for DNA-assisted lithography
Metamaterials obtain new properties from having metallized nanoscale features that are often arranged in repeating patterns. In particular, there is a need to create metasurfaces with a negative refractive index. As nanoscale fabrication using conventional top-down methods can be both difficult and time-consuming, bottom-up techniques have gained growing interest. Especially, the DNA origami method can be utilized to assemble lattices with nanoscale features on 2D surfaces, which can then be metallized using DNA-assisted lithography (DALI). This thesis provides a full study of the DNA origami fishnet lattice assembly kinetics and optimization of lattice order on a silicon surface using liquid and air AFM imaging. Similar studies have only been performed on mica, which is unsuitable for the lithographic processes used in DALI. A fishnet lattice with nanoscale features was assembled on silicon utilizing the blunt-ended, twist-corrected Seeman tile (TC-ST) origami and ionic interactions on a solid-liquid interface. In total, the effect of six different cations (Mg2+, Ni2+, Ca2+, Na+, K+, Li+) on DNA origami attachment and lattice quality were studied, out of which magnesium (Mg2+) and sodium (Na+) produced the best quality monolayer. Additionally, for dried samples nickel (Ni2+) was found to be essential for fixing the formed structures on silicon to avoid the detachment of DNA origami during washing. Also, the effect of temperature was found to be crucial for utilizing lower ionic concentrations like the ones employed on mica. Alternatively, the amount of blunt-end interactions between origami can be decreased to work
in lower temperatures. In conclusion, similar fishnets with polycrystal-like lattice domains can be produced on silicon as what can be created on mica.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29740]
License
Related items
Showing items with similar title or keywords.
-
Large-Scale Formation of DNA Origami Lattices on Silicon
Tapio, Kosti; Kielar, Charlotte; Parikka, Johannes M.; Keller, Adrian; Järvinen, Heini; Fahmy, Karim; Toppari, J. Jussi (American Chemical Society (ACS), 2023)In recent years, hierarchical nanostructures have found applications in fields like diagnostics, medicine, nano-optics, and nanoelectronics, especially in challenging applications like the creation of metasurfaces with ... -
Constructing Large 2D Lattices Out of DNA-Tiles
Parikka, Johannes M.; Sokołowska, Karolina; Markešević, Nemanja; Toppari, J. J. (MDPI, 2021)The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has ... -
Individual arc-discharge synthesized multiwalled carbon nanotubes probed with multiple measurement techniques
Ahlskog, Markus; Hokkanen, Matti J.; Levshov, Dmitry; Svensson, Krister; Volodin, Alexander; van Haesendonck, Chris (American Institute of Physics, 2020)Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT), or related MWNTs, exhibit a good quality compared to the more common type of MWNT synthesized by catalytic chemical vapor deposition methods. Yet experimental ... -
Graphene phononic crystals fabricated with electron-beam lithography
Lankinen, Aaro (2021)Koska grafeeni on aito kaksiulotteinen materiaali, sen avulla voidaan tutkia käytännössä teorioiden ennustamaa käyttäytymistä sellaisissa järjestelmissä. Yksi erityisen kiinnostava ilmiö on lämmönjohtavuuden lasku kun ... -
Fabrication of a suspended carbon nanotube nanomechanical device via e-beam lithography
Pajunen, Mikael (2008)