Näytä suppeat kuvailutiedot

dc.contributor.advisorToppari, Jussi
dc.contributor.advisorTapio, Kosti
dc.contributor.advisorSokolowska, Karolina
dc.contributor.advisorParikka, Johannes
dc.contributor.authorJärvinen, Heini
dc.date.accessioned2022-08-10T05:42:51Z
dc.date.available2022-08-10T05:42:51Z
dc.date.issued2022
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82454
dc.description.abstractMetamaterials obtain new properties from having metallized nanoscale features that are often arranged in repeating patterns. In particular, there is a need to create metasurfaces with a negative refractive index. As nanoscale fabrication using conventional top-down methods can be both difficult and time-consuming, bottom-up techniques have gained growing interest. Especially, the DNA origami method can be utilized to assemble lattices with nanoscale features on 2D surfaces, which can then be metallized using DNA-assisted lithography (DALI). This thesis provides a full study of the DNA origami fishnet lattice assembly kinetics and optimization of lattice order on a silicon surface using liquid and air AFM imaging. Similar studies have only been performed on mica, which is unsuitable for the lithographic processes used in DALI. A fishnet lattice with nanoscale features was assembled on silicon utilizing the blunt-ended, twist-corrected Seeman tile (TC-ST) origami and ionic interactions on a solid-liquid interface. In total, the effect of six different cations (Mg2+, Ni2+, Ca2+, Na+, K+, Li+) on DNA origami attachment and lattice quality were studied, out of which magnesium (Mg2+) and sodium (Na+) produced the best quality monolayer. Additionally, for dried samples nickel (Ni2+) was found to be essential for fixing the formed structures on silicon to avoid the detachment of DNA origami during washing. Also, the effect of temperature was found to be crucial for utilizing lower ionic concentrations like the ones employed on mica. Alternatively, the amount of blunt-end interactions between origami can be decreased to work in lower temperatures. In conclusion, similar fishnets with polycrystal-like lattice domains can be produced on silicon as what can be created on mica.en
dc.format.extent136
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subject.otherDNA origami
dc.subject.otherDNA nanotechnology
dc.subject.othersolid-liquid interface
dc.subject.othermetasurface
dc.subject.othernegative refractive index
dc.titleFabrication of DNA origami lattice on silicon surface for DNA-assisted lithography
dc.identifier.urnURN:NBN:fi:jyu-202208104003
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.rights.accesslevelopenAccess
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4021
dc.subject.ysoDNA
dc.subject.ysohilateoria
dc.subject.ysometamateriaalit
dc.subject.ysopii
dc.subject.ysoatomivoimamikroskopia
dc.subject.ysoDNA
dc.subject.ysolattice theory
dc.subject.ysometamaterials
dc.subject.ysosilicon
dc.subject.ysoatomic force microscopy
dc.format.contentfulltext
dc.rights.accessrights
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot