dc.contributor.author | Salmi, Pauliina | |
dc.contributor.author | Calderini, Marco | |
dc.contributor.author | Pääkkönen, Salli | |
dc.contributor.author | Taipale, Sami | |
dc.contributor.author | Pölönen, Ilkka | |
dc.date.accessioned | 2022-04-28T07:57:19Z | |
dc.date.available | 2022-04-28T07:57:19Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Salmi, P., Calderini, M., Pääkkönen, S., Taipale, S., & Pölönen, I. (2022). Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network. <i>Journal of Applied Phycology</i>, <i>34</i>(3), 1565-1575. <a href="https://doi.org/10.1007/s10811-022-02735-w" target="_blank">https://doi.org/10.1007/s10811-022-02735-w</a> | |
dc.identifier.other | CONVID_117816621 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/80780 | |
dc.description.abstract | Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.ispartofseries | Journal of Applied Phycology | |
dc.rights | CC BY 4.0 | |
dc.subject.other | microalgae monitoring | |
dc.subject.other | hyperspectral imaging | |
dc.subject.other | machine learning | |
dc.title | Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202204282447 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Akvaattiset tieteet | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.contributor.oppiaine | Aquatic Sciences | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1565-1575 | |
dc.relation.issn | 0921-8971 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 34 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 321780 | |
dc.subject.yso | hyperspektrikuvantaminen | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | mikrolevät | |
dc.subject.yso | biomassa (ekologia) | |
dc.subject.yso | viljely | |
dc.subject.yso | optiset ominaisuudet | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | ympäristötutkimus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39290 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26977 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39245 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5098 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25870 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10900 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | https://doi.org/10.5281/zenodo.5061719 | |
dc.relation.doi | 10.1007/s10811-022-02735-w | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | Open Access funding provided by University of Jyväskylä (JYU). This research was funded by the Academy of Finland, grant number 321780 for Pauliina Salmi. | |
datacite.isSupplementedBy.doi | 10.17011/jyx/dataset/78519 | |
datacite.isSupplementedBy | Salmi, Pauliina; Calderini, Marco; Taipale, Sami; Pölönen, Ilkka; Pääkkönen, Salli. (2021). <i>Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network</i>. V. 2.9.2021. University of Jyväskylä. <a href="https://doi.org/10.17011/jyx/dataset/78519" target="_blank">https://doi.org/10.17011/jyx/dataset/78519</a>. <a href="http://urn.fi/URN:NBN:fi:jyu-202111085543">https://urn.fi/URN:NBN:fi:jyu-202111085543</a> | |
dc.type.okm | A1 | |