Näytä suppeat kuvailutiedot

dc.contributor.authorLe Donne, Enrico
dc.contributor.authorLučić, Danka
dc.contributor.authorPasqualetto, Enrico
dc.date.accessioned2022-04-13T12:31:18Z
dc.date.available2022-04-13T12:31:18Z
dc.date.issued2023
dc.identifier.citationLe Donne, E., Lučić, D., & Pasqualetto, E. (2023). Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds. <i>Potential Analysis</i>, <i>59</i>(1), 349-374. <a href="https://doi.org/10.1007/s11118-021-09971-8" target="_blank">https://doi.org/10.1007/s11118-021-09971-8</a>
dc.identifier.otherCONVID_117770649
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80582
dc.description.abstractWe prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesPotential Analysis
dc.rightsCC BY 4.0
dc.subject.otherinfinitesimal hilbertianity
dc.subject.otherSobolev space
dc.subject.othersub-Riemannian manifold
dc.subject.othersub-Finsler manifold
dc.titleUniversal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202204132262
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineGeometrinen analyysi ja matemaattinen fysiikkafi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.contributor.oppiaineGeometric Analysis and Mathematical Physicsen
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange349-374
dc.relation.issn0926-2601
dc.relation.numberinseries1
dc.relation.volume59
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307333 HY
dc.relation.grantnumber274372
dc.relation.grantnumber288501
dc.relation.grantnumber314789
dc.relation.grantnumber312488
dc.relation.grantnumber322898
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysomonistot
dc.subject.ysodifferentiaaligeometria
dc.subject.ysoRiemannin monistot
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28181
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p39163
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s11118-021-09971-8
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundinginformationOpen access funding provided by University of Fribourg. E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). D.L. and E.P. were partially supported by the Academy of Finland, projects 274372, 307333, 312488, and 314789.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0