dc.contributor.author | Korpelin, Ville | |
dc.contributor.author | Kiljunen, Toni | |
dc.contributor.author | Melander, Marko M. | |
dc.contributor.author | Caro, Miguel A. | |
dc.contributor.author | Kristoffersen, Henrik H. | |
dc.contributor.author | Mammen, Nisha | |
dc.contributor.author | Apaja, Vesa | |
dc.contributor.author | Honkala, Karoliina | |
dc.date.accessioned | 2022-03-21T08:01:52Z | |
dc.date.available | 2022-03-21T08:01:52Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Korpelin, V., Kiljunen, T., Melander, M. M., Caro, M. A., Kristoffersen, H. H., Mammen, N., Apaja, V., & Honkala, K. (2022). Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats. <i>Journal of Physical Chemistry Letters</i>, <i>13</i>(11), 2644-2652. <a href="https://doi.org/10.1021/acs.jpclett.2c00230" target="_blank">https://doi.org/10.1021/acs.jpclett.2c00230</a> | |
dc.identifier.other | CONVID_104668333 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/80252 | |
dc.description.abstract | Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nose−Hoover, Berendsen, and simple velocity rescaling methods fail to provide are liable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a “feature” of any particular code but a represent in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726−740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nose−Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Journal of Physical Chemistry Letters | |
dc.rights | CC BY 4.0 | |
dc.title | Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202203211948 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2644-2652 | |
dc.relation.issn | 1948-7185 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 13 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Authors. Published by American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 317739 | |
dc.relation.grantnumber | 307853 | |
dc.relation.grantnumber | 332290 | |
dc.relation.grantnumber | 338228 | |
dc.relation.grantnumber | 5482-2a4a9 | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | molekyylidynamiikka | |
dc.subject.yso | lämmönsäätimet | |
dc.subject.yso | kemia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29332 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3347 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1801 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acs.jpclett.2c00230 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Jane and Aatos Erkko Foundation | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Jane ja Aatos Erkon säätiö | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Foundation | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Säätiö | fi |
jyx.fundinginformation | The project was funded by the Academy of Finland projects 307853 (M.M.M.), 338228 (M.M.M.), 310574 (M.A.C.),
330488 (M.A.C.), 317739 (M.M.M., N.M., and K.H.), and 332290 (N.M.). M.M.M. and K.H. also acknowledge Jane and Aatos Erkko Foundation for funding to the LACOR project. | |
dc.type.okm | A1 | |