Näytä suppeat kuvailutiedot

dc.contributor.authorBranytskyi, Vladyslav
dc.contributor.authorGolovianko, Mariia
dc.contributor.authorMalyk, Diana
dc.contributor.authorTerziyan, Vagan
dc.contributor.editorLongo, Francesco
dc.contributor.editorAffenzeller, Michael
dc.contributor.editorPadovano, Antonio
dc.date.accessioned2022-03-16T12:01:59Z
dc.date.available2022-03-16T12:01:59Z
dc.date.issued2022
dc.identifier.citationBranytskyi, V., Golovianko, M., Malyk, D., & Terziyan, V. (2022). Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0. In F. Longo, M. Affenzeller, & A. Padovano (Eds.), <i>3rd International Conference on Industry 4.0 and Smart Manufacturing</i> (200, pp. 418-427). Elsevier. Procedia Computer Science. <a href="https://doi.org/10.1016/j.procs.2022.01.240" target="_blank">https://doi.org/10.1016/j.procs.2022.01.240</a>
dc.identifier.otherCONVID_104556803
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80182
dc.description.abstractBiologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of computer and human vision for more robust and accurate automated object recognition and image generation. We present VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs the first stage of human‘s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and cybersecurity in Industry 4.0. See presentation slides: https://ai.it.jyu.fi/ISM-2021-V1-GAN.pptxen
dc.format.extent1918
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartof3rd International Conference on Industry 4.0 and Smart Manufacturing
dc.relation.ispartofseriesProcedia Computer Science
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherBiologicalization
dc.subject.otherIndustry 4.0
dc.subject.otherGAN
dc.subject.otherVOneGAN
dc.subject.otherprimary visual cortex V1
dc.subject.otherhybrid CNN
dc.titleGenerative adversarial networks with bio-inspired primary visual cortex for Industry 4.0
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202203161883
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineCollective Intelligencefi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineCollective Intelligenceen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange418-427
dc.relation.issn1877-0509
dc.relation.volume200
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Industry 4.0 and Smart Manufacturing
dc.subject.ysokonenäkö
dc.subject.ysotekoäly
dc.subject.ysoneuroverkot
dc.subject.ysokoneoppiminen
dc.subject.ysotuotantotekniikka
dc.subject.ysoteollisuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2618
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p19050
jyx.subject.urihttp://www.yso.fi/onto/yso/p998
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.procs.2022.01.240
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0