Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0
Branytskyi, V., Golovianko, M., Malyk, D., & Terziyan, V. (2022). Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0. In F. Longo, M. Affenzeller, & A. Padovano (Eds.), 3rd International Conference on Industry 4.0 and Smart Manufacturing (200, pp. 418-427). Elsevier. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.01.240
Julkaistu sarjassa
Procedia Computer SciencePäivämäärä
2022Tekijänoikeudet
© 2022 the Authors
Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of computer and human vision for more robust and accurate automated object recognition and image generation. We present VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs the first stage of human‘s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and cybersecurity in Industry 4.0.
See presentation slides: https://ai.it.jyu.fi/ISM-2021-V1-GAN.pptx
...
Julkaisija
ElsevierKonferenssi
International Conference on Industry 4.0 and Smart ManufacturingKuuluu julkaisuun
3rd International Conference on Industry 4.0 and Smart ManufacturingISSN Hae Julkaisufoorumista
1877-0509Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104556803
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Taxonomy of generative adversarial networks for digital immunity of Industry 4.0 systems
Terziyan, Vagan; Gryshko, Svitlana; Golovianko, Mariia (Elsevier, 2021)Industry 4.0 systems are extensively using artificial intelligence (AI) to enable smartness, automation and flexibility within variety of processes. Due to the importance of the systems, they are potential targets for ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Explainable AI for Industry 4.0 : Semantic Representation of Deep Learning Models
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2022)Artificial Intelligence is an important asset of Industry 4.0. Current discoveries within machine learning and particularly in deep learning enable qualitative change within the industrial processes, applications, systems ... -
Industry 4.0 vs. Industry 5.0 : Co-existence, Transition, or a Hybrid
Golovianko, Mariia; Terziyan, Vagan; Branytskyi, Vladyslav; Malyk, Diana (Elsevier, 2023)Smart manufacturing is being shaped nowadays by two different paradigms: Industry 4.0 proclaims transition to digitalization and automation of processes while emerging Industry 5.0 emphasizes human centricity. This turn ... -
Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network
Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (IEEE, 2020)In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.