dc.contributor.author | Covi, Giovanni | |
dc.contributor.author | Mönkkönen, Keijo | |
dc.contributor.author | Railo, Jesse | |
dc.contributor.author | Uhlmann, Gunther | |
dc.date.accessioned | 2022-02-24T07:48:26Z | |
dc.date.available | 2022-02-24T07:48:26Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Covi, G., Mönkkönen, K., Railo, J., & Uhlmann, G. (2022). The higher order fractional Calderón problem for linear local operators : Uniqueness. <i>Advances in Mathematics</i>, <i>399</i>, Article 108246. <a href="https://doi.org/10.1016/j.aim.2022.108246" target="_blank">https://doi.org/10.1016/j.aim.2022.108246</a> | |
dc.identifier.other | CONVID_104350313 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79921 | |
dc.description.abstract | We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the exterior Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Advances in Mathematics | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | Fractional Calderón problem | |
dc.subject.other | Fractional Schrödinger equation | |
dc.subject.other | Sobolev multipliers | |
dc.title | The higher order fractional Calderón problem for linear local operators : Uniqueness | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202202241654 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0001-8708 | |
dc.relation.volume | 399 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2022 Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | inversio-ongelmat | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.accessrights | | |
dc.relation.doi | 10.1016/j.aim.2022.108246 | |
dc.type.okm | A1 | |