Show simple item record

dc.contributor.authorMalbrunot-Ettenauer, S.
dc.contributor.authorKaufmann, S.
dc.contributor.authorBacca, S.
dc.contributor.authorBarbieri, C.
dc.contributor.authorBillowes, J.
dc.contributor.authorBissell, M. L.
dc.contributor.authorBlaum, K.
dc.contributor.authorCheal, B.
dc.contributor.authorDuguet, T.
dc.contributor.authorGarcia Ruiz, R. F.
dc.contributor.authorGins, W.
dc.contributor.authorGorges, C.
dc.contributor.authorHagen, G.
dc.contributor.authorHeylen, H.
dc.contributor.authorHolt, J. D.
dc.contributor.authorJansen, G. R.
dc.contributor.authorKanellakopoulos, A.
dc.contributor.authorKortelainen, M.
dc.contributor.authorMiyagi, T.
dc.contributor.authorNavrátil, P.
dc.contributor.authorNazarewicz, W.
dc.contributor.authorNeugart, R.
dc.contributor.authorNeyens, G.
dc.contributor.authorNörtershäuser, W.
dc.contributor.authorNovario, S. J.
dc.contributor.authorPapenbrock, T.
dc.contributor.authorRatajczyk, T.
dc.contributor.authorReinhard, P.-G.
dc.contributor.authorRodríguez, L. V.
dc.contributor.authorSánchez, R.
dc.contributor.authorSailer, S.
dc.contributor.authorSchwenk, A.
dc.contributor.authorSimonis, J.
dc.contributor.authorSomà, V.
dc.contributor.authorStroberg, S. R.
dc.contributor.authorWehner, L.
dc.contributor.authorWraith, C.
dc.contributor.authorXie, L.
dc.contributor.authorXu, Z. Y.
dc.contributor.authorYang, X. F.
dc.contributor.authorYordanov, D. T.
dc.date.accessioned2022-02-18T10:10:25Z
dc.date.available2022-02-18T10:10:25Z
dc.date.issued2022
dc.identifier.citationMalbrunot-Ettenauer, S., Kaufmann, S., Bacca, S., Barbieri, C., Billowes, J., Bissell, M. L., Blaum, K., Cheal, B., Duguet, T., Garcia Ruiz, R. F., Gins, W., Gorges, C., Hagen, G., Heylen, H., Holt, J. D., Jansen, G. R., Kanellakopoulos, A., Kortelainen, M., Miyagi, T., . . . Yordanov, D. T. (2022). Nuclear Charge Radii of the Nickel Isotopes 58−68,70Ni. <i>Physical Review Letters</i>, <i>128</i>(2), Article 022502. <a href="https://doi.org/10.1103/PhysRevLett.128.022502" target="_blank">https://doi.org/10.1103/PhysRevLett.128.022502</a>
dc.identifier.otherCONVID_104304959
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79835
dc.description.abstractCollinear laser spectroscopy is performed on the nickel isotopes 58−68,70Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii Rc are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLOsat, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r2c⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLOsat. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review Letters
dc.rightsCC BY 4.0
dc.titleNuclear Charge Radii of the Nickel Isotopes 58−68,70Ni
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202202181561
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0031-9007
dc.relation.numberinseries2
dc.relation.volume128
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysoisotoopit
dc.subject.ysoydinfysiikka
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysonikkeli
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6387
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p19926
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevLett.128.022502
jyx.fundinginformationWe acknowledge the support of the ISOLDE Collaboration and technical teams, the ISOLTRAP group, and funding from the European Union’s Horizon 2020 program under Grant Agreement No. 654002. We thank the Physikalisch Technische Bundesanstalt (PTB) Braunschweig for the loan of a precision high-voltage divider. This work was supported by the Max-Planck Society, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-Id 279384907—SFB 1245, the Collaborative Research Center [The Low-Energy Frontier of the Standard Model (SFB 1044)], the Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA+ EXC 2118/1) funded by DFG within the German Excellence Strategy—Projektnummer 39083149, the BMBF under Contracts No. 05P18RDCIA, No. 05P18RDFN1, and No. 05P19RDFN1, the FWO (Belgium), GOA 15/010 from KU Leuven, NSERC, and the Office of Nuclear Physics, U.S. Department of Energy, under Awards No. DE-FG02-96ER40963, No. DE-SC0013365, No. DE-SC0018083, and No. DESC0018223 (NUCLEI SciDAC-4 Collaboration). Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Award No. DE-AC05-00OR22725. The calculations presented in this work were also performed on “Mogon II” at Johannes Gutenberg-Universität in Mainz. Computational resources for DFT calculations were partly provided by the CSC-IT Center for Science, Ltd. (Finland). SCGF calculations were performed by using HPC resources from GENCI-TGCC, France (Contract No. A007057392) and at the DiRAC Complexity system at the University of Leicester, UK (BIS National E-infrastructure capital Grant No. ST/K000373/1 and STFC Grant No. ST/K0003259/1). This work was also supported by consolidated grants from STFC (UK)—ST/L005516/1, ST/L005670/1, ST/L005794/1, ST/P004423/1, and ST/P004598/1. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work profited from R&D carried out in the frame of the FAIR Phase-0 program of LASPEC/ NUSTAR in which TILDA was developed.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0