Näytä suppeat kuvailutiedot

dc.contributor.authorPilecky, Matthias
dc.contributor.authorKämmer, Samuel K.
dc.contributor.authorMathieu‐Resuge, Margaux
dc.contributor.authorWassenaar, Leonard I.
dc.contributor.authorTaipale, Sami J.
dc.contributor.authorMartin‐Creuzburg, Dominik
dc.contributor.authorKainz, Martin J.
dc.date.accessioned2021-12-23T10:07:16Z
dc.date.available2021-12-23T10:07:16Z
dc.date.issued2022
dc.identifier.citationPilecky, M., Kämmer, S. K., Mathieu‐Resuge, M., Wassenaar, L. I., Taipale, S. J., Martin‐Creuzburg, D., & Kainz, M. J. (2022). Hydrogen isotopes (δ2H) of polyunsaturated fatty acids track bioconversion by zooplankton. <i>Functional Ecology</i>, <i>36</i>(3), 538-549. <a href="https://doi.org/10.1111/1365-2435.13981" target="_blank">https://doi.org/10.1111/1365-2435.13981</a>
dc.identifier.otherCONVID_102349773
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79187
dc.description.abstract1. Organisms at the base of aquatic food webs synthesize essential nutrients, such as omega-3 polyunsaturated fatty acids (n-3 PUFA), which are transferred to consumers at higher trophic levels. Many consumers, requiring n-3 long-chain (LC) PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have limited ability to biosynthesize them from the essential dietary precursor α-linolenic acid (ALA) and thus rely on dietary provision of LC-PUFA. 2. We investigated LC-PUFA metabolism in freshwater zooplankton using stable hydrogen isotopes (δ2H) of fatty acids as tracers. We conducted feeding experiments with the freshwater keystone grazer Daphnia to quantify changes in the δ2H value of body FA in response to the FA composition of their food and the δ2H value of the ambient water. 3. The isotopic composition of LC-PUFA changed in Daphnia, depending on the integration of 2H from ambient water during de novo synthesis or bioconversion from dietary precursors, allowing us to distinguish dietary from bioconverted EPA in body tissue. We tested the applicability of these laboratory findings in a field setting by analyzing δ2H values of PUFA in primary producers and consumers in eutrophic ponds to track EPA sources of zooplankton. 4. Multilinear regression models that included conversion of ALA to EPA correlated better with zooplankton δ2HEPA than seston δ2HEPA at low dietary EPA supply. 5. This study provides evidence that zooplankton can compensate for low dietary EPA supply by activating LC-PUFA biosynthesis and shows that herbivorous zooplankton play a crucial role in upgrading FA for higher trophic levels during low dietary EPA supply.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofseriesFunctional Ecology
dc.rightsCC BY 4.0
dc.subject.otherbioconversion
dc.subject.othercompound-specific stable isotopes
dc.subject.otherDaphnia magna
dc.subject.otherdeuterium
dc.subject.otherecophysiology
dc.subject.otheressential fatty acids
dc.subject.othereutrophication
dc.subject.otherGC-IRMS
dc.subject.othertrophic ecology
dc.subject.othertrophic upgrading
dc.subject.otherzooplankton
dc.titleHydrogen isotopes (δ2H) of polyunsaturated fatty acids track bioconversion by zooplankton
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202112236169
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineAquatic Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange538-549
dc.relation.issn0269-8463
dc.relation.numberinseries3
dc.relation.volume36
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
dc.rights.accesslevelopenAccessfi
dc.subject.ysorehevöityminen
dc.subject.ysoplankton
dc.subject.ysorasvahapot
dc.subject.ysovesiekosysteemit
dc.subject.ysoekofysiologia
dc.subject.ysoravintoaineet
dc.subject.ysoravintoverkot
dc.subject.ysovesikirput
dc.subject.ysoisotooppianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11509
jyx.subject.urihttp://www.yso.fi/onto/yso/p3053
jyx.subject.urihttp://www.yso.fi/onto/yso/p4800
jyx.subject.urihttp://www.yso.fi/onto/yso/p11000
jyx.subject.urihttp://www.yso.fi/onto/yso/p16571
jyx.subject.urihttp://www.yso.fi/onto/yso/p3939
jyx.subject.urihttp://www.yso.fi/onto/yso/p22082
jyx.subject.urihttp://www.yso.fi/onto/yso/p14681
jyx.subject.urihttp://www.yso.fi/onto/yso/p38901
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1111/1365-2435.13981
jyx.fundinginformationThis work has been supported by the Austrian Science Fund (FWF; I-3855) and the German Research Foundation (DFG; MA 5005/8-1) within the framework of the DACH collaboration (project ‘AquaTerr’).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0