dc.contributor.author | Ikonen, Toni | |
dc.date.accessioned | 2021-12-21T13:48:29Z | |
dc.date.available | 2021-12-21T13:48:29Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ikonen, T. (2022). Uniformization of metric surfaces using isothermal coordinates. <i>Annales Fennici Mathematici</i>, <i>47</i>(1), 155-180. <a href="https://doi.org/10.54330/afm.112781" target="_blank">https://doi.org/10.54330/afm.112781</a> | |
dc.identifier.other | CONVID_102383982 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79101 | |
dc.description.abstract | Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topologinen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti äärellinen. Tutkimme milloin metrinen pinta on riemannilaisen pinnan geometrisesti kvasikonformaalinen kuva. Osoitamme riittäväksi ehdoksi, että metrinen pinta voidaan peittää eukleideen avaruuden alueiden kvasikonformaalisilla kuvilla. Konstruoimme todistusta varten kartaston isotermisiä koordinaatteja. | fi |
dc.description.abstract | We establish a uniformization result for metric surfaces—metric spaces that aretopological surfaces with locally finite Hausdorff2-measure. Using the geometric definition of qua-siconformality, we show that a metric surface that can be covered by quasiconformal images ofEuclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, weconstruct an atlas of suitable isothermal coordinates. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Suomen matemaattinen yhdistys ry | |
dc.relation.ispartofseries | Annales Fennici Mathematici | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | Quasiconformal | |
dc.subject.other | uniformization | |
dc.subject.other | surface | |
dc.subject.other | reciprocality | |
dc.subject.other | isothermal | |
dc.subject.other | approximate metric differential | |
dc.title | Uniformization of metric surfaces using isothermal coordinates | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202112216083 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 155-180 | |
dc.relation.issn | 2737-0690 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 47 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Finnish Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.format.content | fulltext | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.54330/afm.112781 | |
dc.type.okm | A1 | |