Uniformization of two-dimensional metric surfaces
Rajala, K. (2017). Uniformization of two-dimensional metric surfaces. Inventiones mathematicae, 207(3), 1301-1375. https://doi.org/10.1007/s00222-016-0686-0
Julkaistu sarjassa
Inventiones mathematicaeTekijät
Päivämäärä
2017Tekijänoikeudet
© Springer-Verlag Berlin Heidelberg 2016. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We establish uniformization results for metric spaces that
are homeomorphic to the Euclidean plane or sphere and have locally
finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality,
we give a necessary and sufficient condition for such spaces
to be QC equivalent to the Euclidean plane, disk, or sphere. Moreover,
we show that if such a QC parametrization exists, then the dilatation
can be bounded by 2. As an application, we show that the Euclidean
upper bound for measures of balls is a sufficient condition for the existence
of a 2-QC parametrization. This result gives a new approach
to the Bonk-Kleiner theorem on parametrizations of Ahlfors 2-regular
spheres by quasisymmetric maps.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0020-9910Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26186503
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Uniformization of metric surfaces using isothermal coordinates
Ikonen, Toni (Suomen matemaattinen yhdistys ry, 2022)Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topologinen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti äärellinen. Tutkimme milloin metrinen pinta ... -
Studies of two-dimensional and three-dimensional phononic crystal structures
Tian, Yolan (University of Jyväskylä, 2016)This thesis focuses on studying phononic crystal structures. More specifically, it is aimed at fabrication and measurement of thermal properties of two-dimensional (2D) periodic microstructures and three-dimensional (3D) ... -
Assouad Dimension, Nagata Dimension, and Uniformly Close Metric Tangents
Le Donne, Enrico; Rajala, Tapio (Indiana University, 2015)We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper ... -
Sharpness of uniform continuity of quasiconformal mappings onto s-John domains
Guo, Changyu; Koskela, Pekka (Suomalainen tiedeakatemia, 2017)We show that a prediction in [8] is inaccurate by constructing quasiconformal mappings onto s-John domains so that the mappings fail to be uniformly continuous between natural distances. These examples also exhibit the ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.