Uniformization of metric surfaces using isothermal coordinates
Ikonen, T. (2022). Uniformization of metric surfaces using isothermal coordinates. Annales Fennici Mathematici, 47(1), 155-180. https://doi.org/10.54330/afm.112781
Published in
Annales Fennici MathematiciAuthors
Date
2022Copyright
© 2022 The Finnish Mathematical Society
Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topologinen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti äärellinen. Tutkimme milloin metrinen pinta on riemannilaisen pinnan geometrisesti kvasikonformaalinen kuva. Osoitamme riittäväksi ehdoksi, että metrinen pinta voidaan peittää eukleideen avaruuden alueiden kvasikonformaalisilla kuvilla. Konstruoimme todistusta varten kartaston isotermisiä koordinaatteja. We establish a uniformization result for metric surfaces—metric spaces that aretopological surfaces with locally finite Hausdorff2-measure. Using the geometric definition of qua-siconformality, we show that a metric surface that can be covered by quasiconformal images ofEuclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, weconstruct an atlas of suitable isothermal coordinates.
Publisher
Suomen matemaattinen yhdistys ryISSN Search the Publication Forum
2737-0690Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/102383982
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Reciprocal lower bound on modulus of curve families in metric surfaces
Rajala, Kai; Romney, Matthew (Suomalainen tiedeakatemia, 2019) -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Sharpness of uniform continuity of quasiconformal mappings onto s-John domains
Guo, Changyu; Koskela, Pekka (Suomalainen tiedeakatemia, 2017)We show that a prediction in [8] is inaccurate by constructing quasiconformal mappings onto s-John domains so that the mappings fail to be uniformly continuous between natural distances. These examples also exhibit the ... -
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ... -
Uniformization of two-dimensional metric surfaces
Rajala, Kai (Springer, 2017)We establish uniformization results for metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality, we give ...