Show simple item record

dc.contributor.authorIkonen, Toni
dc.date.accessioned2021-12-21T13:48:29Z
dc.date.available2021-12-21T13:48:29Z
dc.date.issued2022
dc.identifier.citationIkonen, T. (2022). Uniformization of metric surfaces using isothermal coordinates. <i>Annales Fennici Mathematici</i>, <i>47</i>(1), 155-180. <a href="https://doi.org/10.54330/afm.112781" target="_blank">https://doi.org/10.54330/afm.112781</a>
dc.identifier.otherCONVID_102383982
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79101
dc.description.abstractTodistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topologinen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti äärellinen. Tutkimme milloin metrinen pinta on riemannilaisen pinnan geometrisesti kvasikonformaalinen kuva. Osoitamme riittäväksi ehdoksi, että metrinen pinta voidaan peittää eukleideen avaruuden alueiden kvasikonformaalisilla kuvilla. Konstruoimme todistusta varten kartaston isotermisiä koordinaatteja.fi
dc.description.abstractWe establish a uniformization result for metric surfaces—metric spaces that aretopological surfaces with locally finite Hausdorff2-measure. Using the geometric definition of qua-siconformality, we show that a metric surface that can be covered by quasiconformal images ofEuclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, weconstruct an atlas of suitable isothermal coordinates.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSuomen matemaattinen yhdistys ry
dc.relation.ispartofseriesAnnales Fennici Mathematici
dc.rightsCC BY-NC 4.0
dc.subject.otherQuasiconformal
dc.subject.otheruniformization
dc.subject.othersurface
dc.subject.otherreciprocality
dc.subject.otherisothermal
dc.subject.otherapproximate metric differential
dc.titleUniformization of metric surfaces using isothermal coordinates
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202112216083
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange155-180
dc.relation.issn2737-0690
dc.relation.numberinseries1
dc.relation.volume47
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Finnish Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.relation.doi10.54330/afm.112781
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC 4.0
Except where otherwise noted, this item's license is described as CC BY-NC 4.0