Asymptotic and bootstrap tests for subspace dimension
Nordhausen, K., Oja, H., & Tyler, D. E. (2022). Asymptotic and bootstrap tests for subspace dimension. Journal of Multivariate Analysis, 188, Article 104830. https://doi.org/10.1016/j.jmva.2021.104830
Julkaistu sarjassa
Journal of Multivariate AnalysisPäivämäärä
2022Tekijänoikeudet
© 2021 the Authors
Many linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices. The eigen-decomposition of one scatter matrix with respect to another is then often used to determine the dimension of the signal subspace and to separate signal and noise parts of the data. Three popular dimension reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues are used to test for the dimension of the signal space. The limiting null distributions of the test statistics are discussed and novel bootstrap strategies are suggested for the small sample cases. In all three cases, consistent test-based estimates of the signal subspace dimension are introduced as well. The asymptotic and bootstrap tests are illustrated in real data examples.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0047-259XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101039114
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
David E. Tyler’s research was partially supported by the National Science FoundationGrant No. DMS-1407751.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
Kouři,l Štěpán; de Sousa, Julie; Fačevicová Kamila; Gardlo, Alžběta; Muehlmann, Christoph; Nordhausen, Klaus; Friedecký, David; Adam, Tomáš (MDPI, 2023)Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. ... -
Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi‐site MRI data
Hao, Yuxing; Xu, Huashuai; Xia, Mingrui; Yan, Chenwei; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Wiley-Blackwell, 2023)Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular approach for constructing larger datasets to greatly enhance the reliability and reproducibility of neuroscience research. However, the ... -
Enhancing Performance of Linked Independent Component Analysis : Investigating the Influence of Subjects and Modalities
Xu, Huashuai; Li, Huanjie; Kärkkäinen, Tommi; Cong, Fengyu (IEEE, 2023)In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data. The benefit of integrating multiple modalities through fusion lies in its ability to combine the unique strengths of each ... -
Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data
Zhang, Chao‐Ying; Lin, Qiu‐Hua; Niu, Yan‐Wei; Li, Wei‐Xing; Gong, Xiao‐Feng; Cong, Fengyu; Wang, Yu‐Ping; Calhoun, Vince D. (Wiley, 2023)Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information ... -
Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data
Hu, Guoqiang; Waters, Abigail B.; Aslan, Serdar; Frederick, Blaise; Cong, Fengyu; Nickerson, Lisa D. (Frontiers Media, 2020)In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.