Näytä suppeat kuvailutiedot

dc.contributor.authorKorpihalkola, Joni
dc.contributor.authorSipola, Tuomo
dc.contributor.authorPuuska, Samir
dc.contributor.authorKokkonen, Tero
dc.date.accessioned2021-11-09T12:55:19Z
dc.date.available2021-11-09T12:55:19Z
dc.date.issued2021
dc.identifier.citationKorpihalkola, J., Sipola, T., Puuska, S., & Kokkonen, T. (2021). One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer. In <i>SPML 2021 : 4th International Conference on Signal Processing and Machine Learning</i> (pp. 100-106). ACM. <a href="https://doi.org/10.1145/3483207.3483224" target="_blank">https://doi.org/10.1145/3483207.3483224</a>
dc.identifier.otherCONVID_101806407
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78557
dc.description.abstractComputer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAIT's MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a minor one-pixel modification of a whole slide image under analysis can affect the diagnosis by reversing the automatic diagnosis result. The attack poses a threat from the cyber security perspective: the one-pixel method can be used as an attack vector by a motivated attacker.en
dc.format.extent185
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherACM
dc.relation.ispartofSPML 2021 : 4th International Conference on Signal Processing and Machine Learning
dc.rightsIn Copyright
dc.titleOne-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202111095579
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-4503-9017-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange100-106
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 ACM
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Signal Processing and Machine Learning
dc.subject.ysokyberturvallisuus
dc.subject.ysosyöpätaudit
dc.subject.ysodiagnostiikka
dc.subject.ysoverkkohyökkäykset
dc.subject.ysokonenäkö
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26189
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p2618
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1145/3483207.3483224
jyx.fundinginformationThis work was supported by the Regional Council of Central Finland/Council of Tampere Region and European Regional Development Fund as part of the Health Care Cyber Range (HCCR) project of JAMK University of Applied Sciences Institute of Information Technology.
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright