One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer
Korpihalkola, J., Sipola, T., Puuska, S., & Kokkonen, T. (2021). One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer. In SPML 2021 : 4th International Conference on Signal Processing and Machine Learning (pp. 100-106). ACM. https://doi.org/10.1145/3483207.3483224
Päivämäärä
2021Oppiaine
TekniikkaSecure Communications Engineering and Signal ProcessingEngineeringSecure Communications Engineering and Signal ProcessingTekijänoikeudet
© 2021 ACM
Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAIT's MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a minor one-pixel modification of a whole slide image under analysis can affect the diagnosis by reversing the automatic diagnosis result. The attack poses a threat from the cyber security perspective: the one-pixel method can be used as an attack vector by a motivated attacker.
Julkaisija
ACMEmojulkaisun ISBN
978-1-4503-9017-0Konferenssi
International Conference on Signal Processing and Machine LearningKuuluu julkaisuun
SPML 2021 : 4th International Conference on Signal Processing and Machine LearningJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101806407
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the Regional Council of Central Finland/Council of Tampere Region and European Regional Development Fund as part of the Health Care Cyber Range (HCCR) project of JAMK University of Applied Sciences Institute of Information Technology.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Lack of association between screening interval and cancer stage in Lynch syndrome may be accounted for by over-diagnosis; a prospective Lynch syndrome database report
Seppälä, Toni T.; Ahadova, Aysel; Dominguez-Valentin, Mev; Macrae, Finlay; Evans, D. Gareth; Therkildsen, Christina; Sampson, Julian; Scott, Rodney; Burn, John; Möslein, Gabriela; Bernstein, Inge; Holinski-Feder, Elke; Pylvänäinen, Kirsi; Renkonen-Sinisalo, Laura; Lepistö, Anna; Lautrup, Charlotte Kvist; Lindblom, Annika; Plazzer, John-Paul; Winship, Ingrid; Tjandra, Douglas; Katz, Lior H.; Aretz, Stefan; Hüneburg, Robert; Holzapfel, Stefanie; Heinimann, Karl; Valle, Adriana Della; Neffa, Florencia; Gluck, Nathan; Cappel, Wouter H. de Vos tot Nederveen; Vasen, Hans; Morak, Monika; Steinke-Lange, Verena; Engel, Christoph; Rahner, Nils; Schmiegel, Wolff; Vangala, Deepak; Thomas, Huw; Green, Kate; Lalloo, Fiona; Crosbie, Emma J.; Hill, James; Capella, Gabriel; Pineda, Marta; Navarro, Matilde; Blanco, Ignacio; Broeke, Sanne ten; Nielsen, Maartje; Ljungmann, Ken; Nakken, Sigve; Lindor, Noralane; Frayling, Ian; Hovig, Eivind; Sunde, Lone; Kloor, Matthias; Mecklin, Jukka-Pekka; Kalager, Mette; Møller, Pål (BioMed Central Ltd., 2019)Background Recent epidemiological evidence shows that colorectal cancer (CRC) continues to occur in carriers of pathogenic mismatch repair (path_MMR) variants despite frequent colonoscopy surveillance in expert centres. ... -
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
Petäinen, Liisa (2022)Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Instrumenting OpenCTI with a Capability for Attack Attribution Support
Ruohonen, Sami; Kirichenko, Alexey; Komashinskiy, Dmitriy; Pogosova, Mariam (MDPI AG, 2024)In addition to identifying and prosecuting cyber attackers, attack attribution activities can provide valuable information for guiding defenders’ security procedures and supporting incident response and remediation. However, ... -
Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Springer, 2021)Machine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.