dc.contributor.author | Wang, Deqing | |
dc.contributor.author | Chang, Zheng | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2021-10-07T06:48:51Z | |
dc.date.available | 2021-10-07T06:48:51Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Wang, D., Chang, Z., & Cong, F. (2021). Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme. <i>Neural Computing and Applications</i>, <i>33</i>(24), 17369-17387. <a href="https://doi.org/10.1007/s00521-021-06325-8" target="_blank">https://doi.org/10.1007/s00521-021-06325-8</a> | |
dc.identifier.other | CONVID_101378003 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78051 | |
dc.description.abstract | Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly controlled without additional regularization. In this paper, we investigated the nonnegative CANDECOMP/PARAFAC (NCP) decomposition with the sparse regularization item using l1-norm (sparse NCP). When high sparsity is imposed, the factor matrices will contain more zero components and will not be of full column rank. Thus, the sparse NCP is prone to rank deficiency, and the algorithms of sparse NCP may not converge. In this paper, we proposed a novel model of sparse NCP with the proximal algorithm. The subproblems in the new model are strongly convex in the block coordinate descent (BCD) framework. Therefore, the new sparse NCP provides a full column rank condition and guarantees to converge to a stationary point. In addition, we proposed an inexact BCD scheme for sparse NCP, where each subproblem is updated multiple times to speed up the computation. In order to prove the effectiveness and efficiency of the sparse NCP with the proximal algorithm, we employed two optimization algorithms to solve the model, including inexact alternating nonnegative quadratic programming and inexact hierarchical alternating least squares. We evaluated the proposed sparse NCP methods by experiments on synthetic, real-world, small-scale, and large-scale tensor data. The experimental results demonstrate that our proposed algorithms can efficiently impose sparsity on factor matrices, extract meaningful sparse components, and outperform state-of-the-art methods. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Neural Computing and Applications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | tensor decomposition | |
dc.subject.other | nonnegative CANDECOMP/PARAFAC decomposition | |
dc.subject.other | sparse regularization | |
dc.subject.other | proximal algorithm | |
dc.subject.other | inexact block coordinate descent | |
dc.title | Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202110075098 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 17369-17387 | |
dc.relation.issn | 0941-0643 | |
dc.relation.numberinseries | 24 | |
dc.relation.volume | 33 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | algoritmit | |
dc.subject.yso | signaalinkäsittely | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s00521-021-06325-8 | |
jyx.fundinginformation | Open access funding provided by University of Jyväskylä (JYU). This work was supported by National Natural Science Foundation of China (Grant No.91748105), National Foundation in China (No. JCKY2019110B009 & 2020-JCJQ-JJ-252), the Fundamental Research Funds for the Central Universities [DUT20LAB303 & DUT20LAB308] in Dalian University of Technology in China, and the scholarship from China Scholarship Council (No. 201600090043). | |
dc.type.okm | A1 | |