dc.contributor.author | Saarela, Mirka | |
dc.contributor.author | Heilala, Ville | |
dc.contributor.author | Jääskelä, Päivikki | |
dc.contributor.author | Rantakaulio, Anne | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2021-10-07T06:36:43Z | |
dc.date.available | 2021-10-07T06:36:43Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Saarela, M., Heilala, V., Jääskelä, P., Rantakaulio, A., & Kärkkäinen, T. (2021). Explainable Student Agency Analytics. <i>IEEE Access</i>, <i>9</i>, 137444-137459. <a href="https://doi.org/10.1109/access.2021.3116664" target="_blank">https://doi.org/10.1109/access.2021.3116664</a> | |
dc.identifier.other | CONVID_101363666 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78049 | |
dc.description.abstract | Several studies have shown that complex nonlinear learning analytics (LA) techniques outperform the traditional ones. However, the actual integration of these techniques in automatic LA systems remains rare because they are generally presumed to be opaque. At the same time, the current reviews on LA in higher education point out that LA should be more grounded to the learning science with actual linkage to teachers and pedagogical planning. In this study, we aim to address these two challenges. First, we discuss different techniques that open up the decision-making process of complex techniques and how they can be integrated in LA tools. More precisely, we present various global and local explainable techniques with an example of an automatic LA process that provides information about different resources that can support student agency in higher education institutes. Second, we exemplify these techniques and the LA process through recently collected student agency data in four courses of the same content taught by four different teachers. Altogether, we demonstrate how this process—which we call explainable student agency analytics—can contribute to teachers’ pedagogical planning through the LA cycle. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.ispartofseries | IEEE Access | |
dc.rights | CC BY 4.0 | |
dc.subject.other | oppimisanalytiikka | |
dc.subject.other | explainable artificial intelligence | |
dc.subject.other | decision making | |
dc.subject.other | higher education | |
dc.subject.other | student agency | |
dc.title | Explainable Student Agency Analytics | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202110075097 | |
dc.contributor.laitos | Koulutuksen tutkimuslaitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Finnish Institute for Educational Research | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Koulutusteknologia ja kognitiotiede | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Koulutuksen tutkimuslaitos | fi |
dc.contributor.oppiaine | Digitalization in and for learning and interaction | fi |
dc.contributor.oppiaine | Monitieteinen oppimisen ja opetuksen tutkimus | fi |
dc.contributor.oppiaine | Learning and Cognitive Sciences | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Finnish Institute for Educational Research | en |
dc.contributor.oppiaine | Digitalization in and for learning and interaction | en |
dc.contributor.oppiaine | Multidisciplinary research on learning and teaching | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 137444-137459 | |
dc.relation.issn | 2169-3536 | |
dc.relation.volume | 9 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 311877 | |
dc.subject.yso | korkeakouluopiskelu | |
dc.subject.yso | opiskelijat | |
dc.subject.yso | oppimisalustat | |
dc.subject.yso | arviointi | |
dc.subject.yso | toimijuus | |
dc.subject.yso | päätöksenteko | |
dc.subject.yso | tekoäly | |
dc.subject.yso | korkeakouluopetus | |
dc.subject.yso | palaute | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13164 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16486 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26951 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7413 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2335 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1246 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1236 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1109/access.2021.3116664 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland and related to the thematic research area Decision Analytics Utilizing Causal Models and Multiobjective Optimization (DEMO) (jyu.fi/demo), University of Jyväskylä, Finland, under Grant 3118 | |
dc.type.okm | A1 | |