Stationary sets of the mean curvature flow with a forcing term
Julin, V., & Niinikoski, J. (2023). Stationary sets of the mean curvature flow with a forcing term. Advances in Calculus of Variations, 16(2), 391-402. https://doi.org/10.1515/acv-2021-0019
Julkaistu sarjassa
Advances in Calculus of VariationsPäivämäärä
2023Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2021 Walter de Gruyter GmbH
We consider the flat flow solution to the mean curvature equation with forcing in ℝn. Our main resultstates that tangential balls in ℝn under a flat flow with a bounded forcing term will experience fattening, which generalizes the result in [N. Fusco, V. Julin and M. Morini, Stationary sets and asymptotic behavior ofthe mean curvature flow with forcing in the plane, preprint (2020), https://arxiv.org/abs/2004.07734] from the planar case to higher dimensions. Then, as in the planar case, we characterize stationary sets in ℝn for a constant forcing term as finite unions of equisize balls with mutually positive distance.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
1864-8258Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99233805
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Stationary Sets and Asymptotic Behavior of the Mean Curvature Flow with Forcing in the Plane
Fusco, Nicola; Julin, Vesa; Morini, Massimiliano (Springer, 2022)We consider the flat flow solutions of the mean curvature equation with a forcing term in the plane. We prove that for every constant forcing term the stationary sets are given by a finite union of disks with equal radii ... -
Asymptotical behavior of volume preserving mean curvature flow and stationary sets of forced mean curvature flow
Niinikoski, Joonas (Jyväskylän yliopisto, 2021)The main subject of this dissertation is mean curvature type of flows, in particular the volume preserving mean curvature flow. A classical flow in this context is seen as a smooth time evolution of n-dimensional sets. An ... -
Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
Julin, Vesa; Niinikoski, Joonas (Mathematical Sciences Publishers, 2023)We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with ... -
Short time existence of the classical solution to the fractional mean curvature flow
Julin, Vesa; La Manna, Domenico Angelo (Elsevier, 2020)We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C1,1-regular. We provide the same result also for the volume preserving fractional mean ... -
Flat flow solution to the mean curvature flow with volume constraint
Julin, Vesa (Walter de Gruyter GmbH, 2024)In this paper I will revisit the construction of a global weak solution to the volume preserving mean curvature flow via discrete minimizing movement scheme by Mugnai, Seis and Spadaro [L. Mugnai, C. Seis and E. Spadaro, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.