Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
dc.contributor.author | Melander, Marko M. | |
dc.date.accessioned | 2021-08-18T06:13:06Z | |
dc.date.available | 2021-08-18T06:13:06Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Melander, M. M. (2021). Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians. <i>Current Opinion in Electrochemistry</i>, <i>29</i>, Article 100749. <a href="https://doi.org/10.1016/j.coelec.2021.100749" target="_blank">https://doi.org/10.1016/j.coelec.2021.100749</a> | |
dc.identifier.other | CONVID_68776472 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/77399 | |
dc.description.abstract | The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand canonical ensemble (GCE) have enabled to explicitly include and control the electrode potential in first principles calculations. In this review, recent advances and future promises of GCE density functional theory and rate theory are discussed. Particular focus is devoted to considering how the GCE methods either by themselves or combined with model Hamiltonians can be used to address intricate phenomena such as solvent/electrolyte effects and nuclear quantum effects to provide a detailed understanding of electrochemical reactions and interfaces. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Current Opinion in Electrochemistry | |
dc.rights | CC BY 4.0 | |
dc.subject.other | electrocatalysis | |
dc.subject.other | density functional theory | |
dc.subject.other | rate theory | |
dc.subject.other | electron transfer | |
dc.subject.other | proton-coupled electron transfer | |
dc.title | Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians | |
dc.type | review article | |
dc.identifier.urn | URN:NBN:fi:jyu-202108184562 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2451-9103 | |
dc.relation.volume | 29 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 307853 | |
dc.relation.grantnumber | 317739 | |
dc.subject.yso | elektrolyytit | |
dc.subject.yso | sähkökemia | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | elektrokatalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8094 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8093 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38660 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.coelec.2021.100749 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland through the projects #317739 and #307853. | |
dc.type.okm | A2 |