Show simple item record

dc.contributor.authorMelander, Marko M.
dc.date.accessioned2021-08-18T06:13:06Z
dc.date.available2021-08-18T06:13:06Z
dc.date.issued2021
dc.identifier.citationMelander, M. M. (2021). Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians. <i>Current Opinion in Electrochemistry</i>, <i>29</i>, Article 100749. <a href="https://doi.org/10.1016/j.coelec.2021.100749" target="_blank">https://doi.org/10.1016/j.coelec.2021.100749</a>
dc.identifier.otherCONVID_68776472
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77399
dc.description.abstractThe unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand canonical ensemble (GCE) have enabled to explicitly include and control the electrode potential in first principles calculations. In this review, recent advances and future promises of GCE density functional theory and rate theory are discussed. Particular focus is devoted to considering how the GCE methods either by themselves or combined with model Hamiltonians can be used to address intricate phenomena such as solvent/electrolyte effects and nuclear quantum effects to provide a detailed understanding of electrochemical reactions and interfaces.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesCurrent Opinion in Electrochemistry
dc.rightsCC BY 4.0
dc.subject.otherelectrocatalysis
dc.subject.otherdensity functional theory
dc.subject.otherrate theory
dc.subject.otherelectron transfer
dc.subject.otherproton-coupled electron transfer
dc.titleGrand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202108184562
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn2451-9103
dc.relation.volume29
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber307853
dc.relation.grantnumber317739
dc.subject.ysoelektrolyytit
dc.subject.ysosähkökemia
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoelektrokatalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8094
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p38660
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.coelec.2021.100749
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland through the projects #317739 and #307853.
dc.type.okmA2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0