Integral geometry and unique continuation principles
In this thesis we study inverse problems in integral geometry and non-local partial differential equations. We will study these rather different areas of mathematical inverse problems by using the theory of non-local fractional operators. This thesis mainly focuses on proving different kind of unique continuation results of fractional operators which are then used to prove uniqueness results for fractional Calderón problems and partial data problems in scalar and vector field tomography.
The introductory part of the thesis contains a general introduction and review of inverse problems arising in medical and seismic imaging. The included articles are divided into three classes which are then presented in their own sections and studied in different levels of detail.
In the articles [A, B, C, G] we consider partial data problems in the X-ray tomography of scalar and vector fields. In the first article [A] we prove unique continuation for certain Riesz potentials and apply it to partial data problems of scalar fields. In the second article [B] we prove unique continuation results for higher order fractional Laplacians which are then used in proving uniqueness for partial data problems of d-plane transforms. In the third article [C] we study partial data problems of vector fields and we prove unique continuation of the normal operator of vector fields which implies uniqueness for the partial data problems. In the seventh article [G] we generalize the unique continuation result of fractional Laplacians proved in [B] and use it to prove uniqueness for partial data problems of scalar and vector fields, extending the partial data results of the articles [A, B, C] to more general cases.
In the articles [B, D] we consider higher order fractional Calderón problems. In the second article [B] we use the unique continuation of higher order fractional Laplacians to prove uniqueness for the Calderón problem of the higher order fractional (magnetic) Schrödinger equation. In the fourth article [D] we generalize the uniqueness result proved in [B] to include general lower order local perturbations of the fractional Laplacian.
In the articles [E, F] we consider the travel time tomography problem and its different linearized versions. In the fifth article [E] we study mixing ray transforms which are generalizations of the geodesic ray transform. We prove solenoidal injectivity results for them in various different cases. In the sixth article [F] we study the boundary rigidity problem on certain non-reversible Finsler manifolds which are also called Randers manifolds. We prove that if the Randers metric consists of a boundary rigid Riemannian metric and a closed 1-form, then the boundary distances determine the Randers metric uniquely up to a natural gauge.
...
Publisher
Jyväskylän yliopistoISBN
978-951-39-8780-0ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Ilmavirta, J., & Mönkkönen, K. (2020). Unique continuation of the normal operator of the X-ray transform and applications in geophysics. Inverse Problems, 36(4), Article 045014. DOI: 10.1088/1361-6420/ab6e75. JYX: jyx.jyu.fi/handle/123456789/67566
- Artikkeli II: Covi, G., Mönkkönen, K., & Railo, J. (2021). Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 15(4), 641-681. DOI: 10.3934/ipi.2021009
- Artikkeli III: Ilmavirta, J., & Mönkkönen, K. (2021). X-ray Tomography of One-forms with Partial Data. SIAM Journal on Mathematical Analysis, 53(3), 3002-3015. DOI: 10.1137/20M1344779. JYX: jyx.jyu.fi/handle/123456789/77127
- Artikkeli IV: Covi, G., Mönkkönen, K., Railo, J. and Uhlmann, G. The higher order fractional Calder ́on problem for linear local operators: uniqueness. Preprint
- Artikkeli V: Ilmavirta, J., Mönkkönen K. and Railo, J. On tensor decompositions and algebraic structure of the mixed and transverse ray transforms. Preprint
- Artikkeli VI: Mönkkönen, K. Boundary rigidity for Randers metrics. Annales Academiæ Scientiarum Fennicæ. To appear.
- Artikkeli VII: Ilmavirta J. and Mönkkönen K. Partial data problems and unique continuation in scalar and vector field tomography. Preprint
Metadata
Show full item recordCollections
- JYU Dissertations [852]
- Väitöskirjat [3580]
License
Related items
Showing items with similar title or keywords.
-
Process improvement of continuous integration : a case study
Pappinen, Erno (2013) -
Integrated initial and continuing training as a way of developing the professional agency of teachers and student teachers
Ukkonen-Mikkola, Tuulikki; Varpanen, Jan (Elsevier, 2020)In this paper, we discuss training aimed at supporting the professional agency of teachers and student teachers. Drawing on socio-cultural and post-structural theories, we conceptualize professional agency as achieved by ... -
Continuous Analysis of Running Mechanics by Means of an Integrated INS/GPS Device
Davidson, Pavel; Virekunnas, Heikki; Sharma, Dharmendra; Piché, Robert; Cronin, Neil (MDPI AG, 2019)This paper describes a single body-mounted sensor that integrates accelerometers, gyroscopes, compasses, barometers, a GPS receiver, and a methodology to process the data for biomechanical studies. The sensor and its data ... -
Integrating Docker to a Continuous Delivery pipeline : a pragmatic approach
Vase, Tuomas (2016)Docker on kevyt avoimen alustan sovellus, joka pystyy pakkaamaan sovelluksen kaikkien tarvittavien riippuvuuksien kanssa yhteen konttiin, ja tätä teknologiaa kutsutaan konttiteknologiaksi. Oikein käytettynä IT-ammattilaiset ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ...