Show simple item record

dc.contributor.authorShavazipour, Babooshka
dc.contributor.authorKwakkel, Jan H.
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2021-07-27T10:55:42Z
dc.date.available2021-07-27T10:55:42Z
dc.date.issued2021
dc.identifier.citationShavazipour, B., Kwakkel, J. H., & Miettinen, K. (2021). Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach. <i>Environmental modelling and software</i>, <i>144</i>, Article 105134. <a href="https://doi.org/10.1016/j.envsoft.2021.105134" target="_blank">https://doi.org/10.1016/j.envsoft.2021.105134</a>
dc.identifier.otherCONVID_99131741
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77220
dc.description.abstractThis paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution generation. To demonstrate and test the novel approach, we use the classic shallow lake problem. We compare the results obtained with the novel approach to those obtained with previously used approaches. We show that the novel approach guarantees the feasibility and robust efficiency of the produced solutions under all selected scenarios, while decreasing computation cost, addresses the scenario-dependency issues, and enables the decision-makers to explore the trade-off between optimality/feasibility in any selected scenario and robustness across a broader range of scenarios. We also find that the lake problem is ill-suited for reflecting trade-offs in robust performance over the set of scenarios and Pareto optimality in any specific scenario, highlighting the need for novel benchmark problems to properly evaluate novel approaches.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesEnvironmental modelling and software
dc.rightsCC BY 4.0
dc.subject.othermulti-objective optimization
dc.subject.otherscenario planning
dc.subject.otherdeep uncertainty
dc.subject.otherrobust decision making scalarizing functions
dc.subject.otherreference points
dc.titleMulti-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202107274392
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1364-8152
dc.relation.volume144
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber311877
dc.relation.grantnumber322221
dc.subject.ysoskenaariot
dc.subject.ysoepävarmuus
dc.subject.ysooptimaalisuus
dc.subject.ysopareto-tehokkuus
dc.subject.ysopäätöksenteko
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysooptimointi
dc.subject.ysotehokkuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3296
jyx.subject.urihttp://www.yso.fi/onto/yso/p1722
jyx.subject.urihttp://www.yso.fi/onto/yso/p21862
jyx.subject.urihttp://www.yso.fi/onto/yso/p28039
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p8329
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.envsoft.2021.105134
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research was partly funded by the Academy of Finland (grants no. 322221 and 311877). This research is related to the thematic research area Decision Analytics utilizing Causal Models and Multiobjective Optimization (DEMO, jyu.fi/demo) of the University of Jyvaskyla.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0