University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Interactive methods for multiobjective robust optimization

Thumbnail
View/Open
2.8 Mb

Downloads:  
Show download detailsHide download details  
Published in
JYU dissertations
Authors
Zhou-Kangas, Yue
Date
2018
Discipline
Tietotekniikka

 
Practical optimization problems usually have multiple objectives, and they also involve uncertainty from different sources. Various robustness concepts have been proposed to handle multiple objectives and the involved uncertainty simultaneously. However, the practical applicability of the proposed concepts in decision making has not been widely studied in the literature. Developing solution methods to support a decision maker to find a most preferred robust solution is an even more rarely studied topic. Thus, we focus on two goals in this thesis including 1) analyzing the practical applicability of different robustness concepts in decision making and 2) developing interactive methods for supporting decision makers to find most preferred robust solutions under different types of uncertainty. We first consider decision uncertainty (i.e., the optimized solutions cannot be guaranteed with exact implementations). We propose a robustness measure to quantify the effects of uncertainty in the objective function values of solutions. We incorporate the robustness measure to an interactive method, where the solutions are presented to the decision maker with enhanced visualization. We then consider parameter uncertainty (i.e., the parameters in the objective functions involve uncertainty). We first utilize the concept of set-based minmax robustness and develop a two-stage interactive method to support the decision maker to find a most preferred set-based minmax robust Pareto optimal solution. Since set-based minmax robust Pareto optimal solutions are difficult to compute, we propose an evolutionary multiobjective optimization method to approximate a set of them. We then analyze different robustness concepts and verify that lightly robust Pareto optimal solutions are good trade-offs between robustness and objective function values. For supporting a decision maker to find a most preferred lightly robust Pareto optimal solution, we propose an interactive method. The results of this thesis extend the applicability of robustness concepts in decision making to practical problems. In addition, the proposed methods bring decision support in multiobjective robust optimization into practice. ...
Publisher
Jyväskylän yliopisto
ISBN
978-951-39-7549-4
ISSN Search the Publication Forum
2489-9003
Contains publications
  • Artikkeli I: Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2019). Solving multiobjective optimization problems with decision uncertainty : an interactive approach. Journal of Business Economics, 89 (1), 25-51. DOI: 10.1007/s11573-018-0900-1
  • Artikkeli II: Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2018). Interactive Multiobjective Robust Optimization with NIMBUS. In M. Baum, G. Brenner, J. Grabowski, T. Hanschke, S. Hartmann, & A. Schöbel (Eds.), Simulation Science : First International Workshop, SimScience 2017, Göttingen, Germany, April 27–28, 2017, Revised Selected Papers (pp. 60-76). Cham: Springer. DOI: 10.1007/978-3-319-96271-9_4
  • Artikkeli III: Zhou-Kangas, Y., & Miettinen, K. (2018). A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, & D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1 (pp. 287-297). Cham: Springer. DOI: 10.1007/978-3-319-99253-2_23
  • Artikkeli IV: Yue Zhou-Kangas and Anita Schöbel. The Price of Multiobjective Robustness: Analyzing Solution Sets to Uncertain Multiobjective Optimization Problems. Submitted manuscript
  • Artikkeli V: Zhou-Kangas, Y., & Miettinen, K. (2019). Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality. OR Spektrum, 41 (2), 391-413. DOI: 10.1007/s00291-018-0540-4
Keywords
robustness multiobjective optimization uncertainty interactive methods decision-making optimointi monitavoiteoptimointi pareto-tehokkuus epävarmuus päätöksentukijärjestelmät
URI

http://urn.fi/URN:ISBN:978-951-39-7549-4

Metadata
Show full item record
Collections
  • JYU Dissertations [130]
  • Väitöskirjat [3178]

Related items

Showing items with similar title or keywords.

  • Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach 

    Shavazipour, Babooshka; Kwakkel, Jan H.; Miettinen, Kaisa (Elsevier BV, 2021)
    This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution ...
  • Interactive Multiobjective Robust Optimization with NIMBUS 

    Zhou-Kangas, Yue; Miettinen, Kaisa; Sindhya, Karthik (Springer, 2018)
    In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty ...
  • Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality 

    Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2019)
    As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to ...
  • Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process 

    Saccani, Giulia; Hakanen, Jussi; Sindhya, Karthi; Ojalehto, Vesa; Hartikainen, Markus; Antonelli, Manuela; Miettinen, Kaisa (Elsevier, 2020)
    The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive ...
  • DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization 

    Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)
    Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre