Uniform rectifiability and ε-approximability of harmonic functions in Lp
Hofmann, S., & Tapiola, O. (2020). Uniform rectifiability and ε-approximability of harmonic functions in Lp. Annales de l'Institut Fourier, 70(4), 1595-1638. https://doi.org/10.5802/aif.3359
Published in
Annales de l'Institut FourierDate
2020Discipline
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© 2020 Association des Annales de l’institut Fourier
Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that pointwise, L∞ and Lp type ε-approximability properties of harmonic functions are all equivalent and they characterize uniform rectifiability for codimension 1 Ahlfors–David regular sets. Our results and techniques are generalizations of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell and S. Mayboroda.
Publisher
Centre Mersenne; l'Institut Fourier,ISSN Search the Publication Forum
0373-0956Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/97818425
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Centre of Excellence, AoFAdditional information about funding
S.H. was supported by NSF grant DMS-1664047. O.T. was supported by Emil Aaltosen Säätiö through Foundations’ Post Doc Pool grant. In the previous stages of this work, he was supported by the European Union through T. Hytönen’s ERC Starting Grant 278558 “Analytic-probabilistic methods for borderline singular integrals” and the Finnish Centre of Excellence in Analysis and Dynamics Research.License
Related items
Showing items with similar title or keywords.
-
ε-approximability of harmonic functions in Lp implies uniform rectifiability
Bortz, Simon; Tapiola, Olli (American Mathematical Society, 2019) -
Uniform rectifiability implies Varopoulos extensions
Hofmann, Steve; Tapiola, Olli (Elsevier, 2021)We construct extensions of Varopolous type for functions f∈BMO(E), for any uniformly rectifiable set E of codimension one. More precisely, let Ω⊂Rn+1 be an open set satisfying the corkscrew condition, with an n-dimensional ... -
Gradient estimates for heat kernels and harmonic functions
Coulhon, Thierry; Jiang, Renjin; Koskela, Pekka; Sikora, Adam (Elsevier, 2020)Let (X,d,μ) be a doubling metric measure space endowed with a Dirichlet form E deriving from a “carré du champ”. Assume that (X,d,μ,E) supports a scale-invariant L2-Poincaré inequality. In this article, we study the following ... -
A proof of Carleson's 𝜀2-conjecture
Jaye, Benjamin; Tolsa, Xavier; Villa, Michele (Mathematics Department, Princeton University, 2021)In this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the ... -
Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Hebrew University Magnes Press; Springer, 2023)In a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We ...