Uniform rectifiability implies Varopoulos extensions
Hofmann, S., & Tapiola, O. (2021). Uniform rectifiability implies Varopoulos extensions. Advances in Mathematics, 390, Article 107961. https://doi.org/10.1016/j.aim.2021.107961
Julkaistu sarjassa
Advances in MathematicsPäivämäärä
2021Tekijänoikeudet
© 2021 the Authors
We construct extensions of Varopolous type for functions f∈BMO(E), for any uniformly rectifiable set E of codimension one. More precisely, let Ω⊂Rn+1 be an open set satisfying the corkscrew condition, with an n-dimensional uniformly rectifiable boundary ∂Ω, and let ≔σ≔Hn⌊∂Ω denote the surface measure on ∂Ω. We show that if f∈BMO(∂Ω,dσ) with compact support on ∂Ω, then there exists a smooth function V in Ω such that |∇V(Y)|dY is a Carleson measure with Carleson norm controlled by the BMO norm of f, and such that V converges in some non-tangential sense to f almost everywhere with respect to σ. Our results should be compared to recent geometric characterizations of Lp-solvability and of BMO-solvability of the Dirichlet problem, by Azzam, the first author, Martell, Mourgoglou and Tolsa and by the first author and Le, respectively. In combination, this latter pair of results shows that one can construct, for all f∈Cc(∂Ω), a harmonic extension u, with |∇u(Y)|2dist(Y,∂Ω)dY a Carleson measure with Carleson norm controlled by the BMO norm of f, only in the presence of an appropriate quantitative connectivity condition.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0001-8708Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99281118
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
S.H. was supported by NSF grant DMS-1664047. O.T. was partially supported by Emil Aaltosen Säätiö through Foundations' Post Doc Pool grant.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Uniform rectifiability and ε-approximability of harmonic functions in Lp
Hofmann, Steve; Tapiola, Olli (Centre Mersenne; l'Institut Fourier,, 2020)Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that ... -
ε-approximability of harmonic functions in Lp implies uniform rectifiability
Bortz, Simon; Tapiola, Olli (American Mathematical Society, 2019) -
Gradient estimates for heat kernels and harmonic functions
Coulhon, Thierry; Jiang, Renjin; Koskela, Pekka; Sikora, Adam (Elsevier, 2020)Let (X,d,μ) be a doubling metric measure space endowed with a Dirichlet form E deriving from a “carré du champ”. Assume that (X,d,μ,E) supports a scale-invariant L2-Poincaré inequality. In this article, we study the following ... -
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey (Springer International Publishing, 2018)The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. ... -
Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem
Kumar, Kundan; Kyas, Svetlana; Nordbotten, Jan Martin; Repin, Sergey (Elsevier, 2021)The paper is concerned with guaranteed a posteriori error estimates for a class of evolutionary problems related to poroelastic media governed by the quasi-static linear Biot equations. The system is decoupled by employing ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.