Polunetsinnän algoritmit ja niiden tehokkuus
Authors
Date
2021Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tässä tutkimuksessa tutkitaan erilaisten polunetsinnän algoritmeja ja niiden tehokkuutta 2D-videopelimaailmassa. Tutkittavat algoritmit ovat A*-algoritmi, Dijkstran algoritmi, Breadth-first algoritmi, Depth-first algoritmi ja kuinka näitä algoritmeja voidaan hyödyntää hierarkkisen polunsuunnittelun kanssa. In this thesis we research different pathfinding algorithms and their efficiency in 2D-videogame environment. The algorithms used in this thesis are A-star algorithm, Dijkstra algorithm, Breadth-first algorithm, Depth-first algorithm and how these algorithms can be used in hierarchical path planning.
Keywords
Metadata
Show full item recordCollections
- Kandidaatintutkielmat [5345]
Related items
Showing items with similar title or keywords.
-
A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness
Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2018)For multiobjective optimization problems with uncertain parameters in the objective functions, different variants of minmax robustness concepts have been defined in the literature. The idea of minmax robustness is to ... -
Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows
Gülmez, Burak; Emmerich, Michael; Fan, Yingjie (Taylor & Francis, 2024)This paper presents a model and heuristic solution algorithms for the Green Vehicle Routing Problem with Flexible Time Windows. A scenario of new vehicle routing is analyzed in which customers are asked to provide alternative ... -
Parametrien tunnistus ja datajoukon sovittaminen optimoinnin avulla Potku-ohjelmassa
Rekilä, Heta (2019)Tutkielmassa perehdytään erityyppisiin optimointialgoritmeihin, joita modeFRONTIER-optimointiympäristö tarjoaa. Ympäristöä voi käyttää tehokkaaseen optimointialgoritmien vertailuun. Algoritmien suoriutumisen arviointia ... -
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ...