University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Parametrien tunnistus ja datajoukon sovittaminen optimoinnin avulla Potku-ohjelmassa

Thumbnail
View/Open
2.0Mb

Downloads:  
Show download detailsHide download details  
Authors
Rekilä, Heta
Date
2019
Discipline
TietotekniikkaMathematical Information Technology
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tutkielmassa perehdytään erityyppisiin optimointialgoritmeihin, joita modeFRONTIER-optimointiympäristö tarjoaa. Ympäristöä voi käyttää tehokkaaseen optimointialgoritmien vertailuun. Algoritmien suoriutumisen arviointia varten määriteltiin vertailumenetelmä, jossa hyödynnettiin ZDT-funktioita. Vertailun tulosten perusteella valittiin kaksi algoritmia, NSGA-II ja MOGA-II, joita käytettiin simuloidun datajoukon sovittamiseen kokeellista datajoukkoa vastaavaksi. Datajoukot olivat Jyväskylän yliopiston fysiikan laitoksen Potku-ohjelmalla tuotettuja energiaspektrejä. Havaittiin, että sovittamiseen soveltui parhaiten NSGA-II. Algoritmi toteutettiin osaksi Potku-ohjelmaa.
 
This thesis focuses on different types of optimization algorithms that are included in modeFRONTIER. modeFRONTIER is an application that can be used to efficiently compare optimization algorithms. A comparison method that uses ZDT functions was developed to aid when the performance of these different algorithms was evaluated. The results indicated that two algorithms, NSGA-II and MOGA-II, would be the best candidates to use in fitting a data set to match another data set. These two data sets were energy spectra from an application called Potku (a simulation and analysis software from the Department of Physics in the University of Jyväskylä), and the simulated energy spectrum was matched to the experimental energy spectrum. It was observed that the best performance was by NSGA-II. NSGA-II was implemented as a part of Potku.
 
Keywords
Potku monitavoitteinen optimointi modeFRONTIER MOGA-II NSGA-II ERDA datajoukon sovittaminen Pareto-optimaalisuus zdt-funktiot sukupolvien etäisyys -mittari välistys-mittari virheen suhdeluku -mittari fluenssi rekyylijakauma energiaspektri vertailu pareto-tehokkuus algoritmit optimointi
URI

http://urn.fi/URN:NBN:fi:jyu-201906263456

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23396]

Related items

Showing items with similar title or keywords.

  • Handling expensive multiobjective optimization problems with evolutionary algorithms 

    Chugh, Tinkle (University of Jyväskylä, 2017)
    Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ...
  • Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach 

    Shavazipour, Babooshka; Kwakkel, Jan H.; Miettinen, Kaisa (Elsevier BV, 2021)
    This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution ...
  • DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization 

    Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)
    Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ...
  • A Data-Driven Surrogate-Assisted Evolutionary Algorithm Applied to a Many-Objective Blast Furnace Optimization Problem 

    Chugh, Tinkle; Chakraborti, Nirupam; Sindhya, Karthik; Jin, Yaochu (Taylor & Francis Inc., 2017)
    A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives ...
  • Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies 

    Chugh, Tinkle; Allmendinger, Richard; Ojalehto, Vesa; Miettinen, Kaisa (Association for Computing Machinery (ACM), 2018)
    We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre