Parametrien tunnistus ja datajoukon sovittaminen optimoinnin avulla Potku-ohjelmassa
Tekijät
Päivämäärä
2019Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Tutkielmassa perehdytään erityyppisiin optimointialgoritmeihin, joita modeFRONTIER-optimointiympäristö tarjoaa. Ympäristöä voi käyttää tehokkaaseen optimointialgoritmien vertailuun. Algoritmien suoriutumisen arviointia varten määriteltiin vertailumenetelmä, jossa hyödynnettiin ZDT-funktioita. Vertailun tulosten perusteella valittiin kaksi algoritmia, NSGA-II ja MOGA-II, joita käytettiin simuloidun datajoukon sovittamiseen kokeellista datajoukkoa vastaavaksi. Datajoukot olivat Jyväskylän yliopiston fysiikan laitoksen Potku-ohjelmalla tuotettuja energiaspektrejä. Havaittiin, että sovittamiseen soveltui parhaiten NSGA-II. Algoritmi toteutettiin osaksi Potku-ohjelmaa. This thesis focuses on different types of optimization algorithms that are included in modeFRONTIER. modeFRONTIER is an application that can be used to efficiently compare optimization algorithms. A comparison method that uses ZDT functions was developed to aid when the performance of these different algorithms was evaluated. The results indicated that two algorithms, NSGA-II and MOGA-II, would be the best candidates to use in fitting a data set to match another data set. These two data sets were energy spectra from an application called Potku (a simulation and analysis software from the Department of Physics in the University of Jyväskylä), and the simulated energy spectrum was matched to the experimental energy spectrum. It was observed that the best performance was by NSGA-II. NSGA-II was implemented as a part of Potku.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29556]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2017)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ... -
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2009)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.