Estimation of causal effects with small data in the presence of trapdoor variables
Helske, J., Tikka, S., & Karvanen, J. (2021). Estimation of causal effects with small data in the presence of trapdoor variables. Journal of the Royal Statistical Society. Series A: Statistics in Society, 184(3), 1030-1051. https://doi.org/10.1111/rssa.12699
Date
2021Copyright
© 2021 The Authors. Journal of the Royal Statistical Society: Series A (Statistics in Society) published by John Wiley & Sons Ltd on behalf of Royal Statistical Society
We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with real data from the Life Course 1971–2002 study. Using this data set, we estimate the causal effect of education on income in the Finnish context. Bayesian modelling allows us to take the parameter uncertainty into account and to present the estimated causal effects as posterior distributions.
Publisher
Wiley-BlackwellISSN Search the Publication Forum
0964-1998Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/86927238
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research profiles, AoFAdditional information about funding
Academy of Finland, Grant/Award Number: 311877License
Related items
Showing items with similar title or keywords.
-
Price Optimization Combining Conjoint Data and Purchase History : A Causal Modeling Approach
Valkonen, Lauri; Tikka, Santtu; Helske, Jouni; Karvanen, Juha (University of Pennsylvania Press, 2024)Pricing decisions of companies require an understanding of the causal effect of a price change on the demand. When real-life pricing experiments are infeasible, data-driven decision-making must be based on alternative data ... -
Estimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models
Helske, Jouni; Tikka, Santtu (Elsevier, 2024)Panel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been presented for observational causal inference based on such data. Existing approaches typically impose restrictive ... -
Identifying territories using presence-only citizen science data : An application to the Finnish wolf population
Karppinen, Santeri; Rajala, Tuomas; Mäntyniemi, Samu; Kojola, Ilpo; Vihola, Matti (Elsevier BV, 2022)Citizens, community groups and local institutions participate in voluntary biological monitoring of population status and trends by providing species data e.g. for regulations and conservation. Sophisticated statistical ... -
Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
Gorbach, Tetiana; de Luna, Xavier; Karvanen, Juha; Waernbaum, Ingeborg (JMLR, 2023)Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst ... -
A Bayesian Reconstruction of a Historical Population in Finland, 1647–1850
Voutilainen, Miikka; Helske, Jouni; Högmander, Harri (Springer, 2020)This article provides a novel method for estimating historical population development. We review the previous literature on historical population time-series estimates and propose a general outline to address the well-known ...