Sub-Finsler Horofunction Boundaries of the Heisenberg Group
Fisher, N., & Nicolussi Golo, S. (2021). Sub-Finsler Horofunction Boundaries of the Heisenberg Group. Analysis and Geometry in Metric Spaces, 9(1), 19-52. https://doi.org/10.1515/agms-2020-0121
Julkaistu sarjassa
Analysis and Geometry in Metric SpacesPäivämäärä
2021Tekijänoikeudet
© 2021 the Authors
We give a complete analytic and geometric description of the horofunction boundary for polygonal
sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We
develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting
horofunctions to Pansu derivatives of the distance function.
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
2299-3274Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/52676135
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissioRahoitusohjelmat(t)
EU:n 7. puiteohjelma (FP7)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
S.N.G has been supported by the University of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New”; by the INdAM – GNAMPA Project 2019 “Rectiability in Carnot groups”; and by the Marie Curie Actions-Initial Training Network “Metric Analysis For Emergent Technologies (MAnET)” (n. 607643).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
Sachkov, Yuri L. (Pleiades Publishing, 2020)We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on ... -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ... -
Lipschitz Functions on Submanifolds of Heisenberg Groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Oxford University Press (OUP), 2023)We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.