Näytä suppeat kuvailutiedot

dc.contributor.authorFisher, Nate
dc.contributor.authorNicolussi Golo, Sebastiano
dc.date.accessioned2021-04-07T05:39:28Z
dc.date.available2021-04-07T05:39:28Z
dc.date.issued2021
dc.identifier.citationFisher, N., & Nicolussi Golo, S. (2021). Sub-Finsler Horofunction Boundaries of the Heisenberg Group. <i>Analysis and Geometry in Metric Spaces</i>, <i>9</i>(1), 19-52. <a href="https://doi.org/10.1515/agms-2020-0121" target="_blank">https://doi.org/10.1515/agms-2020-0121</a>
dc.identifier.otherCONVID_52676135
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74969
dc.description.abstractWe give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherDe Gruyter
dc.relation.ispartofseriesAnalysis and Geometry in Metric Spaces
dc.rightsCC BY 4.0
dc.subject.otherhoroboundary
dc.subject.othersub-Finsler distance
dc.subject.otherhomogeneous group
dc.subject.otherHeisenberg group
dc.titleSub-Finsler Horofunction Boundaries of the Heisenberg Group
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202104072291
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange19-52
dc.relation.issn2299-3274
dc.relation.numberinseries1
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber607643
dc.relation.grantnumber607643
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/607643/EU//
dc.subject.ysoryhmäteoria
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1515/agms-2020-0121
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundinginformationS.N.G has been supported by the University of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New”; by the INdAM – GNAMPA Project 2019 “Rectiability in Carnot groups”; and by the Marie Curie Actions-Initial Training Network “Metric Analysis For Emergent Technologies (MAnET)” (n. 607643).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0