dc.contributor.author | Fisher, Nate | |
dc.contributor.author | Nicolussi Golo, Sebastiano | |
dc.date.accessioned | 2021-04-07T05:39:28Z | |
dc.date.available | 2021-04-07T05:39:28Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Fisher, N., & Nicolussi Golo, S. (2021). Sub-Finsler Horofunction Boundaries of the Heisenberg Group. <i>Analysis and Geometry in Metric Spaces</i>, <i>9</i>(1), 19-52. <a href="https://doi.org/10.1515/agms-2020-0121" target="_blank">https://doi.org/10.1515/agms-2020-0121</a> | |
dc.identifier.other | CONVID_52676135 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74969 | |
dc.description.abstract | We give a complete analytic and geometric description of the horofunction boundary for polygonal
sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We
develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting
horofunctions to Pansu derivatives of the distance function. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | De Gruyter | |
dc.relation.ispartofseries | Analysis and Geometry in Metric Spaces | |
dc.rights | CC BY 4.0 | |
dc.subject.other | horoboundary | |
dc.subject.other | sub-Finsler distance | |
dc.subject.other | homogeneous group | |
dc.subject.other | Heisenberg group | |
dc.title | Sub-Finsler Horofunction Boundaries of the Heisenberg Group | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202104072291 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 19-52 | |
dc.relation.issn | 2299-3274 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 9 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 607643 | |
dc.relation.grantnumber | 607643 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/607643/EU// | |
dc.subject.yso | ryhmäteoria | |
dc.subject.yso | differentiaaligeometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1515/agms-2020-0121 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | FP7 (EU's 7th Framework Programme) | en |
jyx.fundingprogram | EU:n 7. puiteohjelma (FP7) | fi |
jyx.fundinginformation | S.N.G has been supported by the University of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New”; by the INdAM – GNAMPA Project 2019 “Rectiability in Carnot
groups”; and by the Marie Curie Actions-Initial Training Network “Metric Analysis For Emergent Technologies
(MAnET)” (n. 607643). | |
dc.type.okm | A1 | |