Show simple item record

dc.contributor.authorKurz, Stefan
dc.contributor.authorPauly, Dirk
dc.contributor.authorPraetorius, Dirk
dc.contributor.authorRepin, Sergey
dc.contributor.authorSebastian, Daniel
dc.date.accessioned2021-03-24T05:43:45Z
dc.date.available2021-03-24T05:43:45Z
dc.date.issued2021
dc.identifier.citationKurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2021). Functional a posteriori error estimates for boundary element methods. <i>Numerische Mathematik</i>, <i>147</i>(4), 937-966. <a href="https://doi.org/10.1007/s00211-021-01188-6" target="_blank">https://doi.org/10.1007/s00211-021-01188-6</a>
dc.identifier.otherCONVID_52390927
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74737
dc.description.abstractFunctional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesNumerische Mathematik
dc.rightsCC BY 4.0
dc.subject.otherboundary element method
dc.subject.otherfunctional a posteriori error estimate
dc.subject.otheradaptive mesh-refinement
dc.titleFunctional a posteriori error estimates for boundary element methods
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202103242077
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange937-966
dc.relation.issn0029-599X
dc.relation.numberinseries4
dc.relation.volume147
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysovirheanalyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysonumeerinen analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9865
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00211-021-01188-6
jyx.fundinginformationD. Sebastian and D. Praetorius thankfully acknowledge support by the Austrian Science Fund (FWF) through the SFB Taming complexity in partial differential systems, and the stand-alone project Optimal adaptivity for BEM and FEM-BEM coupling (grant P27005). The work of S. Kurz was supported in part by the Excellence Initiative of the German Federal and State Governments, and in part by the Graduate School of Computational Engineering at TU Darmstadt.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0