Systematic Comparison of Epidemic and Non-Epidemic Carbapenem Resistant Klebsiella pneumoniae Strains
Koskinen, K., Penttinen, R., Örmälä-Odegrip, A.-M., Giske, C. G., Ketola, T., & Jalasvuori, M. (2021). Systematic Comparison of Epidemic and Non-Epidemic Carbapenem Resistant Klebsiella pneumoniae Strains. Frontiers in Cellular and Infection Microbiology, 11, Article 599924. https://doi.org/10.3389/fcimb.2021.599924
Published in
Frontiers in Cellular and Infection MicrobiologyAuthors
Date
2021Discipline
Solu- ja molekyylibiologiaEkologia ja evoluutiobiologiaBiologisten vuorovaikutusten huippututkimusyksikköCell and Molecular BiologyEcology and Evolutionary BiologyCentre of Excellence in Biological Interactions ResearchCopyright
© 2021 the Authors
Over the past few decades, extensively drug resistant (XDR) resistant Klebsiella pneumoniae has become a notable burden to healthcare all over the world. Especially carbapenemase-producing strains are problematic due to their capability to withstand even last resort antibiotics. Some sequence types (STs) of K. pneumoniae are significantly more prevalent in hospital settings in comparison to other equally resistant strains. This provokes the question whether or not there are phenotypic characteristics that may render certain K. pneumoniae more suitable for epidemic dispersal between patients, hospitals, and different environments. In this study, we selected seven epidemic and non-epidemic carbapenem resistant K. pneumoniae isolates for extensive systematic characterization for phenotypic and genotypic qualities in order to identify potential factors that precede or emerge from epidemic successfulness. Studied characteristics include growth rates and densities in different conditions (media, temperature, pH, resource levels), tolerance to alcohol and drought, inhibition between strains, ability to compensate pH, as well as various genomic features. Overall, there are clear differences between isolates, yet, only drought tolerance was found to notably associate with non-epidemic K. pneumoniae strains. We further report a preliminary study on the potential to control K. pneumoniae ST11 with an antimicrobial component produced by a non-epidemic K. pneumoniae. This component initially restricts bacterial growth, but stable resistance develops rapidly in vitro.
...


Publisher
Frontiers MediaISSN Search the Publication Forum
2235-2988Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/52395051
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Research post as Academy Research Fellow, AoF; Others, AoF
Additional information about funding
Authors wish to acknowledge funding from the Academy of Finland (grants no.252411, no.297049 and no. 336518 to MJ and no. 322204 to RP), Emil Aaltonen Foundation and Jane and Aatos Erkko Foundation.License
Related items
Showing items with similar title or keywords.
-
Beta-Lactam Sensitive Bacteria Can Acquire ESBL-Resistance via Conjugation after Long-Term Exposure to Lethal Antibiotic Concentration
Ruotsalainen, Pilvi; Given, Cindy; Penttinen, Reetta; Jalasvuori, Matti (MDPI, 2020)Beta-lactams are commonly used antibiotics that prevent cell-wall biosynthesis. Beta-lactam sensitive bacteria can acquire conjugative resistance elements and hence become resistant even after being exposed to lethal (above ... -
Klebsiella pneumoniae -bakteerilajia infektoivien faagien eristys ja faagiresistenssimekanismien kartoittaminen
Thind, Navjot (2021)Antibioottivastustuskykyisten Klebsiella pneumoniae -bakteerikantojen aiheuttamat infektiot ovat globaalisti kasvava ongelma, sillä ne saattavat olla resistenttejä kaikille kliinisessä käytössä oleville antibiooteille. ... -
Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments
Kairigo, Pius; Ngumba, Elijah; Sundberg, Lotta-Riina; Gachanja, Anthony; Tuhkanen, Tuula (Elsevier, 2020)Active pharmaceutical ingredients, especially antibiotics, are micropollutants whose continuous flow into hydrological cycles has the potential to mediate antibiotic resistance in the environment and cause toxicity to ... -
Plasmid Viability Depends on the Ecological Setting of Hosts within a Multiplasmid Community
Given, Cindy; Penttinen, Reetta; Jalasvuori, Matti (American Society for Microbiology, 2022)Plasmids are extrachromosomal genetic elements, some of which disperse horizontally between different strains and species of bacteria. They are a major factor in the dissemination of virulence factors and antibiotic ... -
Abolishment of antibiotic resistance in Escherichia Coli using a conjugative CRISPR-Cas9 plasmid
Mikkola, Aapo (2020)Kasvava antibioottiresistenssi on merkittävä ongelma, joka vaikuttaa globaalisti terveydenhoitoon, ruoantuotantoon ja taloudelliseen kasvuun. Beta-laktaamien antibioottiluokka kattaa noin kaksi kolmasosaa ihmisten käyttämistä ...