Näytä suppeat kuvailutiedot

dc.contributor.authorLaucht, Arne
dc.contributor.authorHohls, Frank
dc.contributor.authorUbbelohde, Niels
dc.contributor.authorGonzalez-Zalba, M. Fernando
dc.contributor.authorReilly, David J.
dc.contributor.authorStobbe, Søren
dc.contributor.authorSchröder, Tim
dc.contributor.authorScarlino, Pasquale
dc.contributor.authorKoski, Jonne V.
dc.contributor.authorDzurak, Andrew
dc.contributor.authorYang, Chih-Hwan
dc.contributor.authorYoneda, Jun
dc.contributor.authorKuemmeth, Ferdinand
dc.contributor.authorBluhm, Hendrik
dc.contributor.authorPla, Jarryd
dc.contributor.authorHill, Charles
dc.contributor.authorSalfi, Joe
dc.contributor.authorOiwa, Akira
dc.contributor.authorMuhonen, Juha T.
dc.contributor.authorVerhagen, Ewold
dc.contributor.authorLaHaye, M. D.
dc.contributor.authorKim, Hyun Ho
dc.contributor.authorTsen, Adam W.
dc.contributor.authorCulcer, Dimitrie
dc.contributor.authorGeresdi, Attila
dc.contributor.authorMol, Jan A.
dc.contributor.authorMohan, Varun
dc.contributor.authorJain, Prashant K.
dc.contributor.authorBaugh, Jonathan
dc.date.accessioned2021-03-15T07:06:53Z
dc.date.available2021-03-15T07:06:53Z
dc.date.issued2021
dc.identifier.citationLaucht, A., Hohls, F., Ubbelohde, N., Gonzalez-Zalba, M. F., Reilly, D. J., Stobbe, S., Schröder, T., Scarlino, P., Koski, J. V., Dzurak, A., Yang, C.-H., Yoneda, J., Kuemmeth, F., Bluhm, H., Pla, J., Hill, C., Salfi, J., Oiwa, A., Muhonen, J. T., . . . Baugh, J. (2021). Roadmap on quantum nanotechnologies. <i>Nanotechnology</i>, <i>32</i>(16), Article 162003. <a href="https://doi.org/10.1088/1361-6528/abb333" target="_blank">https://doi.org/10.1088/1361-6528/abb333</a>
dc.identifier.otherCONVID_51884926
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74623
dc.description.abstractQuantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.ispartofseriesNanotechnology
dc.rightsCC BY 4.0
dc.titleRoadmap on quantum nanotechnologies
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202103151965
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn0957-4484
dc.relation.numberinseries16
dc.relation.volume32
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber321416
dc.subject.ysokvanttimekaniikka
dc.subject.ysonanotieteet
dc.subject.ysokvanttifysiikka
dc.subject.ysonanotekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5563
jyx.subject.urihttp://www.yso.fi/onto/yso/p6228
jyx.subject.urihttp://www.yso.fi/onto/yso/p5564
jyx.subject.urihttp://www.yso.fi/onto/yso/p11463
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1088/1361-6528/abb333
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO), and supported an NWO-Vidi grant, by the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 732894 (FET Proactive HOT), and by Academy of Finland Grant No. 321416
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0