Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices
Salmi, P., Eskelinen, M. A., Leppänen, M. T., & Pölönen, I. (2021). Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices. Plants, 10(2), Article 341. https://doi.org/10.3390/plants10020341
Julkaistu sarjassa
PlantsPäivämäärä
2021Tekijänoikeudet
© 2021 the Authors
Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.
...
Julkaisija
MDPI AGISSN Hae Julkaisufoorumista
2223-7747Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51484116
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
This research was funded by The Academy of Finland, grant number 321780.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Non-invasive monitoring of microalgae cultivations using hyperspectral imager
Pääkkönen, Salli; Pölönen, Ilkka; Raita-Hakola, Anna-Maria; Carneiro, Mariana; Cardoso, Helena; Mauricio, Dinis; Rodrigues, Alexandre Miguel Cavaco; Salmi, Pauliina (Springer Nature, 2024)High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the ... -
Original data for study: Rapid quantification of microalgae with hyperspectral camera and vegetation indices
Salmi, Pauliina; Eskelinen, Matti A.; Leppänen, Matti T.; Pölönen, Ilkka (University of Jyväskylä, Open Science Centre. jyx@jyu.fi, 2020)Spectral cameras are traditionally used in remote sensing of microalgae but increasingly also in laboratory-scale applications to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for ... -
Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Pölönen, Ilkka; Pääkkönen, Salli; Taipale, Sami; Calderini, Marco (University of Jyväskylä, 2021-11-08)Artikkeliin "Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network" liittyvä aineisto koostuu seuraavista osista: 1.Transmittanssi-hyperspektrikuvat levänäytteistä ... -
Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
Honkavaara, Eija; Eskelinen, Matti; Pölönen, Ilkka; Saari, Heikki; Ojanen, Harri; Mannila, Rami; Holmlund, Christer; Hakala, Teemu; Litkey, Paula; Rosnell, Tomi; Viljanen, Niko; Pulkkanen, Merja (Institute of Electrical and Electronics Engineers, 2016)Miniaturized hyperspectral imaging sensors are becoming available to small unmanned airborne vehicle (UAV) platforms. Imaging concepts based on frame format offer an attractive alternative to conventional hyperspectral ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.