Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems
Vähäkainu, P., Lehto, M., & Kariluoto, A. (2020). Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems. Journal of Information Warfare, 19(4), 57-69. https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems
Published in
Journal of Information WarfareDate
2020Copyright
© Peregrine Technical Solutions, 2020
Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine Learning models used in a cloud data platform service. Adversarial examples are malicious inputs to ML-models that provide erroneous model outputs while appearing to be unmodified. This kind of attack can fool the classifier and can prevent ML-models from generalizing well and from learning high-level representation; instead, the ML-model learns superficial dataset regularity. This study focuses on investigating, detecting, and preventing adversarial attacks towards a cloud data platform in the cyber-physical context.
Publisher
Peregrine Technical SolutionsISSN Search the Publication Forum
1445-3312Keywords
Original source
https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systemsPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/42349663
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
IoT -based adversarial attack's effect on cloud data platform services in a smart building context
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Academic Conferences International, 2020)IoT sensors and sensor networks are widely employed in businesses. The common problem is a remarkable number of IoT device transactions are unencrypted. Lack of correctly implemented and robust defense leaves the organization's ... -
Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Springer, 2021)Machine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Taxonomy of generative adversarial networks for digital immunity of Industry 4.0 systems
Terziyan, Vagan; Gryshko, Svitlana; Golovianko, Mariia (Elsevier, 2021)Industry 4.0 systems are extensively using artificial intelligence (AI) to enable smartness, automation and flexibility within variety of processes. Due to the importance of the systems, they are potential targets for ... -
Artificial Intelligence in Protecting Smart Building’s Cloud Service Infrastructure from Cyberattacks
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti; Ojalainen, Anniina (Springer, 2020)Gathering and utilizing stored data is gaining popularity and has become a crucial component of smart building infrastructure. The data collected can be stored, for example, into private, public, or hybrid cloud service ...