dc.contributor.author | Vähäkainu, Petri | |
dc.contributor.author | Lehto, Martti | |
dc.contributor.author | Kariluoto, Antti | |
dc.date.accessioned | 2021-02-12T08:57:28Z | |
dc.date.available | 2021-02-12T08:57:28Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Vähäkainu, P., Lehto, M., & Kariluoto, A. (2020). Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems. <i>Journal of Information Warfare</i>, <i>19</i>(4), 57-69. <a href="https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems" target="_blank">https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems</a> | |
dc.identifier.other | CONVID_42349663 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74117 | |
dc.description.abstract | Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine Learning models used in a cloud data platform service. Adversarial examples are malicious inputs to ML-models that provide erroneous model outputs while appearing to be unmodified. This kind of attack can fool the classifier and can prevent ML-models from generalizing well and from learning high-level representation; instead, the ML-model learns superficial dataset regularity. This study focuses on investigating, detecting, and preventing adversarial attacks towards a cloud data platform in the cyber-physical context. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Peregrine Technical Solutions | |
dc.relation.ispartofseries | Journal of Information Warfare | |
dc.relation.uri | https://www.jinfowar.com/journal/volume-19-issue-4/adversarial-attack%E2%80%99s-impact-machine-learning-model-cyber-physical-systems | |
dc.rights | In Copyright | |
dc.subject.other | Artificial Intelligence | |
dc.subject.other | cloud data platform | |
dc.subject.other | adversarial attacks | |
dc.subject.other | defence mechanisms | |
dc.subject.other | machine learning | |
dc.title | Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202102121545 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 57-69 | |
dc.relation.issn | 1445-3312 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 19 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Peregrine Technical Solutions, 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | esineiden internet | |
dc.subject.yso | kyberturvallisuus | |
dc.subject.yso | tekoäly | |
dc.subject.yso | pilvipalvelut | |
dc.subject.yso | verkkohyökkäykset | |
dc.subject.yso | tietoturva | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | älytekniikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27206 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26189 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24167 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27466 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5479 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27260 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.type.okm | A1 | |