Polariton response in the presence of Brownian dissipation from molecular vibrations
Kansanen, K. S. U., Toppari, J. J., & Heikkilä, T. T. (2021). Polariton response in the presence of Brownian dissipation from molecular vibrations. Journal of Chemical Physics, 154(4), Article 044108. https://doi.org/10.1063/5.0036905
Published in
Journal of Chemical PhysicsDate
2021Copyright
© 2021 Author(s).
We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, the uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed “zero-detuning” point. Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depending on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a sanity check of the experiments trying to “prove” results originating from strong coupling, such as vacuum-enhanced chemical reaction rate.
...
Publisher
American Institute of PhysicsISSN Search the Publication Forum
0021-9606Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/51359245
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
K.S.U.K. acknowledges the financial support of the Magnus Ehrnrooth foundation. This work was supported by the Academy of Finland projects HYNEQ (Grant No. 317118) and ManipuLight (Grant No. 323995).License
Related items
Showing items with similar title or keywords.
-
Theory for the stationary polariton response in the presence of vibrations
Kansanen, Kalle S. U.; Asikainen, Aili; Toppari, J. Jussi; Groenhof, Gerrit; Heikkilä, Tero T. (American Physical Society, 2019)We construct a model describing the response of a hybrid system where the electromagnetic field—in particular, surface plasmon polaritons—couples strongly with electronic excitations of atoms or molecules. Our approach is ... -
Effect of molecular Stokes shift on polariton dynamics
Hulkko, Eero; Pikker, Siim; Tiainen, Ville; Tichauer, Ruth H.; Groenhof, Gerrit; Toppari, Jussi J. (AIP Publishing, 2021)When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light–matter states, polaritons, are ... -
Polariton-assisted long-distance energy transfer between excitons in two-dimensional semiconductors
Pajunpää, Tuomas; Nigmatulin, Fedor; Akkanen, Suvi-Tuuli; Fernandez, Henry; Groenhof, Gerrit; Sun, Zhipei (American Physical Society (APS), 2024)Strong exciton-photon coupling offers an effective path for polariton-mediated long-distance coherent energy transfer (ET) between excitonic states. Here, we demonstrate strong coupling between excitons in WS2 monolayers, ... -
Photochemical initiation of polariton-mediated exciton propagation
Sokolovskii, Ilia; Groenhof, Gerrit (De Gruyter, 2024)Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light–matter quasi-particles ... -
Multi-scale dynamics simulations of molecular polaritons : the effect of multiple cavity modes on polariton relaxation
Tichauer, Ruth H.; Feist, Johannes; Groenhof, Gerrit (AIP Publishing, 2021)Coupling molecules to the confined light modes of an optical cavity is showing great promise for manipulating chemical reactions. However, to fully exploit this principle and use cavities as a new tool for controlling ...