Näytä suppeat kuvailutiedot

dc.contributor.authorYan, Rui
dc.contributor.authorLi, Fan
dc.contributor.authorZhou, Dong Dong
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorCong, Fengyu
dc.date.accessioned2021-01-27T06:21:35Z
dc.date.available2021-01-27T06:21:35Z
dc.date.issued2021
dc.identifier.citationYan, R., Li, F., Zhou, D.D., Ristaniemi, T., & Cong, F. (2021). Automatic sleep scoring : a deep learning architecture for multi-modality time series. <i>Journal of Neuroscience Methods</i>, <i>348</i>, Article 108971. <a href="https://doi.org/10.1016/j.jneumeth.2020.108971" target="_blank">https://doi.org/10.1016/j.jneumeth.2020.108971</a>
dc.identifier.otherCONVID_46982800
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73831
dc.description.abstractBackground: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. Result: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals. Comparison: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost. Conclusions: The model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Neuroscience Methods
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherpolysomnography
dc.subject.otherautomatic sleep scoring
dc.subject.othermulti-modality analysis
dc.subject.otherdeep learning
dc.titleAutomatic sleep scoring : a deep learning architecture for multi-modality time series
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202101271292
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0165-0270
dc.relation.volume348
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosignaalinkäsittely
dc.subject.ysosignaalianalyysi
dc.subject.ysounitutkimus
dc.subject.ysokoneoppiminen
dc.subject.ysouni (lepotila)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p21988
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p8299
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.jneumeth.2020.108971
jyx.fundinginformationThis work was supported by the National Natural Science Foundation of China (Grant No. 91748105), National Foundation in China (No. JCKY2019110B009 & 2020-JCJQ-JJ-252), the Fundamental Research Funds for the Central Universities [DUT2019, DUT20LAB303] in Dalian University of Technology in China, and the China Scholarship Council (Nos. 201606060227).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0